
Shinken Documentation
Release 2.4

Shinken Team

July 15, 2015

Contents

1 About 1
1.1 About Shinken . 2

2 Getting Started 5
2.1 Advice for Beginners . 6
2.2 Installations . 7
2.3 Upgrading Shinken . 11

3 Configuring Shinken 13
3.1 Configuration Overview . 14
3.2 Main Configuration File (shinken.cfg) Options . 15
3.3 Object Configuration Overview . 23
3.4 Object Definitions . 25
3.5 Custom Object Variables . 26
3.6 Main advanced configuration . 28

4 Running Shinken 49
4.1 Verifying Your Configuration . 50
4.2 Starting and Stopping Shinken . 50

5 The Basics 53
5.1 Setting up a basic Shinken Configuration . 54
5.2 Monitoring Plugins . 59
5.3 Understanding Macros and How They Work . 61
5.4 Standard Macros in Shinken . 65

69subsubsection*.137
70subsubsection*.183
72subsubsection*.236
73subsubsection*.262

5.5 Host Checks . 79
5.6 Service Checks . 81
5.7 Active Checks . 82
5.8 Passive Checks . 83
5.9 State Types . 86
5.10 Time Periods . 88
5.11 Determining Status and Reachability of Network Hosts . 90
5.12 Notifications . 96
5.13 Active data acquisition modules . 100

i

5.14 Setup Network and logical dependencies in Shinken . 101
5.15 Update Shinken . 108

6 Medium 111
6.1 Business rules . 112
6.2 Monitoring a DMZ . 120
6.3 Shinken High Availability . 121
6.4 Mixed GNU/linux AND Windows pollers . 123
6.5 Notifications and escalations . 124
6.6 The Notification Ways, AKA mail 24x7, SMS only the night for a same contact 128
6.7 Passive data acquisition . 129
6.8 Snapshots . 131

7 Advanced Topics 133
7.1 External Commands . 134
7.2 Event Handlers . 135
7.3 Volatile Services . 139
7.4 Service and Host Freshness Checks . 141
7.5 Distributed Monitoring . 143
7.6 Redundant and Failover Network Monitoring . 152
7.7 Detection and Handling of State Flapping . 152
7.8 Notification Escalations . 155
7.9 On-Call Rotations . 161
7.10 Monitoring Service and Host Clusters . 165
7.11 Host and Service Dependencies . 165
7.12 State Stalking . 171
7.13 Performance Data . 172
7.14 Scheduled Downtime . 175
7.15 Adaptive Monitoring . 176
7.16 Predictive Dependency Checks . 177
7.17 Cached Checks . 179
7.18 Passive Host State Translation . 183
7.19 Service and Host Check Scheduling . 183
7.20 Object Inheritance . 184
7.21 Advanced tricks . 195
7.22 Migrating from Nagios to Shinken . 202
7.23 Multi layer discovery . 202
7.24 Multiple action urls . 205
7.25 Aggregation rule . 205
7.26 Scaling Shinken for large deployments . 207
7.27 Defining advanced service dependencies . 211
7.28 Shinken’s distributed architecture . 216
7.29 Shinken’s distributed architecture with realms . 218
7.30 Businessimpact modulations . 221
7.31 Check modulations . 222
7.32 Macro modulations . 222
7.33 Result modulations . 223
7.34 Shinken and Android . 224
7.35 Send sms by gateway . 226
7.36 Triggers . 228
7.37 Unused nagios parameters . 229
7.38 Advanced discovery with Shinken . 236
7.39 Discovery with Shinken . 239

ii

8 Config 243
8.1 Host Definition . 244
8.2 Host Group Definition . 251
8.3 Service Definition . 252
8.4 Service Group Definition . 260
8.5 Contact Definition . 261
8.6 Contact Group Definition . 265
8.7 Time Period Definition . 265
8.8 Command Definition . 267
8.9 Service Dependency Definition . 269
8.10 Service Escalation Definition . 271
8.11 Host Dependency Definition . 273
8.12 Host Escalation Definition . 274
8.13 Extended Host Information Definition . 276
8.14 Extended Service Information Definition . 278
8.15 Notification Way Definition . 280
8.16 Realm Definition . 281
8.17 Arbiter Definition . 282
8.18 Scheduler Definition . 284
8.19 Poller Definition . 285
8.20 Reactionner Definition . 286
8.21 Broker Definition . 288

9 Shinken Architecture 291
9.1 Arbiter supervision of Shinken processes . 292
9.2 Advanced architectures . 294
9.3 How are commands and configurations managed in Shinken . 300
9.4 Problems and impacts correlation management . 302
9.5 Shinken Architecture . 303

10 Troubleshooting 309
10.1 FAQ - Shinken troubleshooting . 310

11 Integration With Other Software 313
11.1 Integration Overview . 314
11.2 SNMP Trap Integration . 315
11.3 TCP Wrappers Integration . 316
11.4 Use Shinken with Thruk . 318
11.5 Nagios CGI UI . 320
11.6 Thruk interface . 321
11.7 Use Shinken with ... 322
11.8 Use Shinken with Centreon . 327
11.9 Use Shinken with Graphite . 329
11.10 Use Shinken with Multisite . 332
11.11 Use Shinken with Nagvis . 334
11.12 Use Shinken with Old CGI and VShell . 335
11.13 Use Shinken with PNP4Nagios . 336
11.14 Use Shinken with WebUI . 338

12 Security and Performance Tuning 343
12.1 Security Considerations . 344
12.2 Tuning Shinken For Maximum Performance . 347
12.3 Scaling a Shinken installation . 348
12.4 Shinken performance statistics . 348
12.5 Graphing Performance Info With MRTG and nagiostats . 349

iii

13 How to monitor ... 351
13.1 Monitoring Active Directory . 352
13.2 Monitoring Asterisk servers . 354
13.3 Monitoring DHCP servers . 356
13.4 Monitoring IIS servers . 357
13.5 Monitoring Linux devices . 359
13.6 Monitoring Linux devices . 363
13.7 Monitoring Linux devices via a Local Agent . 363
13.8 Monitoring Linux devices via SNMP . 364
13.9 Monitoring Microsoft Exchange . 366
13.10 Monitoring Microsoft SQL databases . 369
13.11 Monitoring MySQL databases . 372
13.12 Monitoring Routers and Switches . 375
13.13 Monitoring Network devices . 379
13.14 Monitoring Oracle databases . 383
13.15 Monitoring Printers . 389
13.16 Monitoring Publicly Available Services . 391
13.17 Monitoring VMware hosts and machines . 395
13.18 Monitoring Windows devices . 398
13.19 Monitoring Windows devices via NSClient++ . 401
13.20 Monitoring Windows devices via WMI . 404

14 How to contribute 409
14.1 Shinken packs . 410
14.2 Shinken modules . 411
14.3 Getting Help and Ways to Contribute . 412
14.4 Shinken Package Manager . 414

15 Development 417
15.1 Shinken Programming Guidelines . 418
15.2 Test Driven Development . 419
15.3 Shinken Plugin API . 423
15.4 Developing Shinken Daemon Modules . 425
15.5 Hacking the Shinken Code . 426
15.6 Shinken documentation . 429

16 Deprecated 435
16.1 Feature comparison between Shinken and Nagios . 436

17 Shinken modules 439

Python Module Index 441

iv

CHAPTER 1

About

1

Shinken Documentation, Release 2.4

1.1 About Shinken

Shinken is an open source monitoring framework written in Python under the terms of the GNU Affero General Public
License . It was created in 2009 as a simple proof of concept of a Nagios patch. The first release of Shinken was
the December 1st of 2009 as simple monitoring tool. Since the 2.0 version (April 2014) Shinken is described as
a monitoring framework due to its high number of modules. For the same reason, modules are now in separated
repositories. You can find some in the shinken-monitoring organization’s page on Github

1.1.1 Shinken Project

Shinken is now an open source monitoring framework but was first created to be a open source monitoring solution.
This difference is important for the team, a framework does not have the same use than an all in one solution. The
main idea when developing Shinken is the flexibility which is our definition of framework. Nevertheless, Shinken was
first made differently and we try to keep all the good things that made it a monitoring solution :

• Easy to install : install is mainly done with pip but some packages are available (deb / rpm) and we are planning
to provide nightly build.

• Easy for new users : once installed, Shinken provide a simple command line interface to install new module and
packs.

• Easy to migrate from Nagios : we want Nagios configuration and plugins to work in Shinken so that it is a “in
place” replacement. Plugins provide great flexibility and are a big legacy codebase to use. It would be a shame
not to use all this community work

• Multi-platform : python is available in a lot of OS. We try to write generic code to keep this possible.

• Utf8 compliant : python is here to do that. For now Shinken is compatible with 2.6-2.7 version but python 3.X
is even more character encoding friendly.

• Independent from other monitoring solution : our goal is to provide a modular tool that can integrate with others
through standard interfaces). Flexibility first.

• Flexible : in an architecture point view. It is very close to our scalability wish. Cloud computing is make
architecture moving a lot, we have to fit to it.

• Fun to code : python ensure good code readability. Adding code should not be a pain when developing.

This is basically what Shinken is made of. Maybe add the “keep it simple” Linux principle and it’s prefect. There is
nothing we don’t want, we consider every features / ideas.

1.1.2 Features

Shinken has a lot of features, we started to list some of them in the last paragraph. Let’s go into details:

• Role separated daemons : we want a daemon to do one thing but doing it good. There are 6 of them
but one is not compulsory.

• Great flexibility : you didn’t got that already? Shinken modules allow it to talk to almost everything
you can imagine.

Those to points involve all the following :

• Data export to databases :

– Graphite

– InfluxDB

– RRD

2 Chapter 1. About

http://www.gnu.org/licenses/agpl.txt
http://www.gnu.org/licenses/agpl.txt
http://www.nagios.org
https://github.com/shinken-monitoring

Shinken Documentation, Release 2.4

– GLPI

– CouchDB

– Livestatus (MK_Livestatus reimplementation)

– Socket write for other purpose (Splunk, Logstash, Elastic Search)

– MySQL (NDO reimplementation)

– Oracle (NDO reimplementation)

• Integration with web user interface :

– WebUI (Shinken own UI)

– Thruk

– Adagios

– Multisite

– Nagvis

– PNP4Nagios

– NConf

– Centreon (With NDO, not fully working, not recommended)

• Import config from databases :

– GLPI

– Amazon EC2

– MySQL

– MongoDB

– Canonical Landscape

• Shinken provide sets of configuration, named packs, for a huge number of services :

– Databases (Mysql, Oracle, MSSQL, memcached, mongodb, influxdb etc.)

– Routers, Switches (Cisco, Nortel, Procurve etc.)

– OS (Linux, windows, Aix, HP-UX etc.)

– Hypervisors (VMWare, Vsphere)

– Protocols (HTTP, SSH, LDAP, DNS, IMAP, FTP, etc.)

– Application (Weblogic, Exchange, Active Directory, Tomcat, Asterisk, etc.)

– Storage (IBM-DS, Safekit, Hacmp, etc.)

• Smart SNMP polling : The SNMP Booster module is a must have if you have a huge infrastructure
of routers and switches.

• Scalability : no server overloading, you just have to install new daemons on another server and load
balancing is done.

But Shinken is even more :

• Realm concept : you can monitor independent environments / customer

• DMZ monitroing : some daemon have passive facilities so that firewall don’t block monitoring.

1.1. About Shinken 3

Shinken Documentation, Release 2.4

• Business impact : Shinken can differentiate impact of a critical alert on a toaster versus the web
store

• Efficient correlation between parent-child relationship and business process rules

• High availability : daemons can have spare ones.

• Business rules : For a higher level of monitoring. Shinken can notify you only if 3 out 5 of your
server are down

• Very open-minded team : help is always welcome, there is job for everyone.

1.1.3 Release cycle

Shinken team is trying to setup a new release cycle with an objective of 4 release per year. Each release is divided into
three part : re-factoring (few weeks), features (one month), freezing (one month). Roadmap is available in a specific
Github issue, feature addition can be discussed there. Technical point of view about a specific feature are discussed in
a separated issue.

1.1.4 Release code names

I (Jean Gabès) keep the right to name the code name of each release. That’s the only thing I will keep for me in this
project as its founder. :)

4 Chapter 1. About

https://github.com/naparuba/shinken/labels/CURRENT%20ROADMAP
https://github.com/naparuba/shinken/labels/CURRENT%20ROADMAP

CHAPTER 2

Getting Started

5

Shinken Documentation, Release 2.4

2.1 Advice for Beginners

Congratulations on choosing Shinken! Shinken is quite powerful and flexible, but it can take a bit of work to get it
configured just the way you’d like. Once you become familiar with how it works and what it can do for you, you’ll
never want to be without it :-) Here are some important things to keep in mind for first-time Shinken users:

• Relax - it takes some time. Don’t expect to be able to get things working exactly the way you want them right
off the bat. Setting up Shinken can involve a bit of work - partly because of the options that Shinken offers,
partly because you need to know what to monitor on your network (and how best to do it).

• Use the quickstart instructions. The Quickstart installation guide is designed to get most new users up and
running with a basic Shinken setup fairly quickly. Within 10 minutes you can have Shinken installed and
monitoring your local system. Once that’s complete, you can move on to learning how to configure Shinken to
do more.

• Get familiar with the Getting Started section. Shinken has a getting started documentation section, that is
easier to read through for common undertakings and to understand how Shinken works. It can be simpler to
follow than the exhaustive official documentation.

• Read the documentation. Shinken can be tricky to configure when you’ve got a good grasp of what’s going
on, and nearly impossible if you don’t. Make sure you read the documentation (particularly the sections on
Configuring Shinken and The Basics). Save the advanced topics for when you’ve got a good understanding of
the basics.

• Seek the help of others. If you’ve read the documentation, reviewed the sample config files, and are still
having problems, go through the Shinken user resources to learn how you can get help and contribute back to
the project.

6 Chapter 2. Getting Started

Shinken Documentation, Release 2.4

2.2 Installations

2.2. Installations 7

Shinken Documentation, Release 2.4

2.2.1 10 Minutes Shinken Installation Guide

Summary

By following this tutorial, in 10 minutes you will have the core monitoring system for your network.

The very first step is to verify that your server meets the requirements, the installation script will try to meet all
requirements automatically.

You can get familiar with the Shinken Architecture now, or after the installation. This will explain the software
components and how they fit together.

• Installation : GNU/Linux & Unix

• Installation : Windows

Ready? Let’s go!

Requirements

Mandatory Requirements

• Python 2.6 or higher (2.7 will get higher performance)

• python-pycurl Python package for Shinken daemon communication

• setuptools or distribute Python package for installation

Conditional Requirements

• Python 2.7 is required for developers to run the test suite, shinken/test/

• python-cherrypy3 (recommended) enhanceddaemons communications, especially in HTTPS mode

• Monitoring Plugins (recommended) provides a set of plugins to monitor host (Shinken uses check_icmp by
default install). Monitoring plugins are available on most linux distributions (nagios-plugins package)

Warning: Do not mix installation methods! If you wish to change method, use the uninstaller from the chosen
method THEN install using the alternate method.

GNU/Linux & Unix Installation

Method 1: Pip

Shinken 2.4 is available on Pypi : https://pypi.python.org/pypi/Shinken/2.4 You can download the tarball and execute
the setup.py or just use the pip command to install it automatically.

apt-get install python-pip python-pycurl
adduser shinken
pip install shinken

8 Chapter 2. Getting Started

http://www.python.org/download/
http://pycurl.sourceforge.net/
http://pypi.python.org/pypi/setuptools/
http://www.python.org/download/
http://www.cherrypy.org/
https://www.monitoring-plugins.org/
https://pypi.python.org/pypi/Shinken/2.4

Shinken Documentation, Release 2.4

Method 2: Packages

For now the 2.4 packages are not available, but the community is working hard for it! Packages are simple, easy to
update and clean. Packages should be available on Debian/Ubuntu and Fedora/RH/CentOS soon (basically .deb and
.rpm).

Method 3: Installation from sources

Download last stable Shinken tarball archive (or get the latest git snapshot) and extract it somewhere:

adduser shinken
wget http://www.shinken-monitoring.org/pub/shinken-2.4.tar.gz
tar -xvzf shinken-2.4.tar.gz
cd shinken-2.4
python setup.py install

Shinken 2.X uses LSB path. If you want to stick to one directory installation you can of course. Default paths are the
following:

• /etc/shinken for configuration files

• /var/lib/shinken for shinken modules, retention files...

• /var/log/shinken for log files

• /var/run/shinken for pid files

Windows Installation

For 2.X+ the executable installer may not be provided. Consequently, installing Shinken on a Windows may be manual
with setup.py. Steps are basically the same as on Linux (Python install etc.) but in windows environment it’s always a
bit tricky.

2.2.2 Configure Shinken for Production

If you have installed Shinken with packages, they should be production-ready. Otherwise, you should do the following
steps to ensure everything is fine.

Enable Shinken at boot

This depend on your Linux distribution (actually it’s related to the init mechanism : upstart, systemd, sysv ..) you may
use one of the following tool.

Systemd

This enable Shinken service on a systemd base OS. Note that a Shinken service can be used to start all service.

for i in arbiter poller reactionner scheduler broker receiver; do
systemctl enable shinken-$i.service;
done

2.2. Installations 9

http://www.shinken-monitoring.org/pub/shinken-2.4.tar.gz
https://github.com/naparuba/shinken/tarball/master

Shinken Documentation, Release 2.4

RedHat / CentOS

This enable Shinken service on a RedHat/CentOS. Note that a Shinken service can be used to start all service.

chkconfig shinken on

Debian / Ubuntu

This enable Shinken service on a Debian/Ubuntu.

update-rc.d shinken defaults

Start Shinken

This also depend on the OS you are running. You can start Shinken with one of the following:

/etc/init.d/shinken start
service shinken start
systemctl start shinken

Configure Shinken for Sandbox

If you want to try Shinken and keep a simple configuration you may not need to have Shinken enabled at boot. In this
case you can just start Shinken with the simple shell script provided into the sources.

./bin/launch_all.sh

You will have Shinken Core working. No module are loaded for now. You need to install some with the command line
interface

Configure Shinken for Development

If you are willing to edit Shinken source code, you should have chosen the third installation method. In this case you
have currently the whole source code in a directory.

The first thing to do is edit the etc/shinken.cfg and change the shinken user and group (you can comment the line).
You don’t need a shinken user do you? Just run shinken as the current user, creating user is for real shinken setup :)

To manually launch Shinken do the following :

./bin/shinken-scheduler -c /etc/shinken/daemons/schedulerd.ini -d

./bin/shinken-poller -c /etc/shinken/daemons/pollerd.ini -d

./bin/shinken-broker -c /etc/shinken/daemons/brokerd.ini -d

./bin/shinken-reactionner -c /etc/shinken/daemons/reactionnerd.ini -d

./bin/shinken-arbiter -c /etc/shinken/shinken.cfg -d

./bin/shinken-receiver -c /etc/shinken/daemons/receiverd.ini -d

2.2.3 Where is the configuration?

The configuration is where you put the etc directory. Usually it’s /etc/shinken or C:/Program Files/Shinken.

• shinken.cfg is meant to be main configuration file that will call all others

10 Chapter 2. Getting Started

Shinken Documentation, Release 2.4

2.2.4 I migrate from Nagios, do I need to change my Nagios configuration?

No, there is no need to change your existing Nagios configuration. You can use an existing Nagios configuration as-is,
as long as you have installed the plugins expected by the configuration.

Once you are comfortable with Shinken you can start to use its unique and powerful features.

2.2.5 What do I need to do next

The next logical steps for a new user are as listed in the Getting Started pages:

• Did you read the Shinken Architecture presentation?

• Complete the Shinken basic installation

• Start adding devices to monitor, such as:

– Public services (HTTP, SMTP, IMAP, SSH, etc.)

– GNU/Linux clients

– Windows clients

– Routers

– Printers

• Setup the web interface:

– Use the default WebUI

– Or set-up a third-party web interface and addons.

2.2.6 Getting Help

New and experienced users sometimes need to find documentation, troubleshooting tips, a place to chat, etc. The
Shinken community provides many resources to help you. You can discuss installation documentation changes in the
Shinken forums.

2.3 Upgrading Shinken

2.3.1 Upgrading From Previous Shinken Releases

See the update page for that. Basically it’s only about backuping and installing from a later git version (or package).

2.3.2 Upgrading From Nagios 3.x

Just install Shinken and start the arbiter with your Nagios configuration. That’s all.

2.3. Upgrading Shinken 11

Shinken Documentation, Release 2.4

12 Chapter 2. Getting Started

CHAPTER 3

Configuring Shinken

13

Shinken Documentation, Release 2.4

3.1 Configuration Overview

3.1.1 Introduction

There are several different configuration files that you’re going to need to create or edit before you start monitoring
anything. Be patient! Configuring Shinken can take quite a while, especially if you’re first-time user. Once you figure
out how things work, it’ll all be well worth your time. :-)

Sample configuration files are installed in the /etc/shinken/ directory when you follow the Quickstart installation
guide.

3.1.2 Main Configuration File : shinken.cfg

Note: A main configuration file is a file given to the arbiter as parameter from command_line. In Shinken 2.0, there
is only shinken.cfg

The 2.0 introduces a new configuration layout. The basic configuration is now split into several small files. Don’t be
afraid, it’s actually a better layout for your mind because one file ~ one object definition. This helps a lot to understand
object concepts and uses in Shinken configuration.

However, one file, among others can be considered as the entry point : shinken.cfg. This is the main configuration
file.

This configuration file is pointing to all configuration directories Shinken needs. The cfg_dir= statement is actually
doing all the job. It includes all the configuration files described below.

Note: The cfg_dir statement will only read files that end with .cfg. Any other file is skipped.

Documentation for the main configuration file can be found Main Configuration File Options.

3.1.3 Daemons Definition Files

Files for daemons definition are located in separated directories. For example pollers definitions are in the pollers
directory. Each directory contains one file per existing daemon.

3.1.4 Modules Definition Files

Files for modules definition are located in /etc/shinken/modules. Each module has its own configuration file. As
modules are loaded by daemons, modules files are referenced in daemons files. The statement is module to specify a
module to load.

14 Chapter 3. Configuring Shinken

Shinken Documentation, Release 2.4

3.1.5 Resource Files

Resource files can be used to store user-defined macros. The main point of having resource files is to use them to store
sensitive configuration information (like passwords), without making them available to the CGIs.

You can specify one or more optional resource files by using the resource_file directive in your main configuration file.

3.1.6 Object Definition Files

Object definition files are used to define hosts, services, hostgroups, contacts, contactgroups, commands, etc. This is
where you define all the things you want monitor and how you want to monitor them.

You can specify one or more object definition files by using the cfg_file and/or cfg_dir directives in your main config-
uration file.

An introduction to object definitions, and how they relate to each other, can be found here.

3.2 Main Configuration File (shinken.cfg) Options

When creating and/or editing configuration files, keep the following in mind:

• Lines that start with a ‘”#”’ character are taken to be comments and are not processed

• Variable names are case-sensitive

• If you want to configure a process to use a specific module:

3.2. Main Configuration File (shinken.cfg) Options 15

Shinken Documentation, Release 2.4

– You must define the module in a xxx.cfg file in the modules directory

– You must reference it in the modules section for that process, e.g. the broker.cfg file

The main configuration file is “shinken.cfg”. It is located in the “/etc/shinken/” directory. Sample main configuration
files are installed for you when you follow the Quickstart installation guide. Below are listed parameters currently
used in the file. For other parameters (not mentionned by default) see Main Configuration File Advanced

3.2.1 Default used options

Cfg dir and Cfg files

Format :

cfg_dir=<directory_name>
cfg_file=<file_name>

Those are statements and not parameters. The arbiter considers them as order to open other(s) configuration(s)
file(s) For the cfg_dir one, the arbiter only reads files ending with ”.cfg”. The arbiter does read recursively directory
for files but does not consider lines into those files as statements anymore.

This means that a cfg_dir or cfg_file is considered as a parameter outside of shinken.cfg (or any configuration file
directly given to the arbiter as parameter in a command line) The arbiter handles main configuration files differently
than any other files.

With those 2 statements, all Shinken configuration is defined : daemons, objects, resources.

Automatic State Retention Update Interval

Format:

retention_update_interval=<minutes>

Default:

retention_update_interval=60

This setting determines how often (in minutes) that Shinken scheduler will automatically save retention data during
normal operation. If you set this value to 0, it will not save retention data at regular intervals, but it will still save
retention data before shutting down or restarting. If you have disabled state retention (with the State Retention Option
option), this option has no effect.

Maximum Host/Service Check Spread

Format:

max_service_check_spread=<minutes>
max_host_check_spread=<minutes>

Default:

max_service_check_spread=30
max_host_check_spread=30

This option determines the maximum number of minutes from when Shinken starts that all hosts/services (that are
scheduled to be regularly checked) are checked. This option will ensure that the initial checks of all hosts/services
occur within the timeframe you specify. Default value is 30 (minutes).

16 Chapter 3. Configuring Shinken

Shinken Documentation, Release 2.4

Service/Host Check Timeout

Format:

service_check_timeout=<seconds>
host_check_timeout=<seconds>

Default:

service_check_timeout=60
host_check_timeout=30

This is the maximum number of seconds that Shinken will allow service/host checks to run. If checks exceed this
limit, they are killed and a CRITICAL state is returned. A timeout error will also be logged.

There is often widespread confusion as to what this option really does. It is meant to be used as a last ditch mechanism
to kill off plugins which are misbehaving and not exiting in a timely manner. It should be set to something high (like
60 seconds or more), so that each check normally finishes executing within this time limit. If a check runs longer than
this limit, Shinken will kill it off thinking it is a runaway processes.

Timeout Exit Status

Format:

timeout_exit_status=[0,1,2,3]

Default:

timeout_exit_status=2

State set by Shinken in case of timeout.

Flap History

Format:

flap_history=<int>

Default:

flap_history=20

This option is used to set the history size of states keep by the scheduler to make the flapping calculation. By default,
the value is 20 states kept.

The size in memory is for the scheduler daemon : 4Bytes * flap_history * (nb hosts + nb services). For a big en-
vironment, it costs 4 * 20 * (1000+10000) - 900Ko. So you can raise it to higher value if you want. To have more
information about flapping, you can read this.

Max Plugins Output Length

Format:

max_plugins_output_length=<int>

Default:

3.2. Main Configuration File (shinken.cfg) Options 17

Shinken Documentation, Release 2.4

max_plugins_output_length=8192

This option is used to set the max size in bytes for the checks plugins output. So if you saw truncated output like for
huge disk check when you have a lot of partitions, raise this value.

Enable problem/impacts states change

Format:

enable_problem_impacts_states_change=<0/1>

Default:

enable_problem_impacts_states_change=0

This option is used to know if we apply or not the state change when a host or service is impacted by a root problem
(like the service’s host going down or a host’s parent being down too). The state will be changed by UNKNONW for
a service and UNREACHABLE for a host until their next schedule check. This state change do not count as a attempt,
it’s just for console so the users know that theses objects got problems and the previous states are not sure.

Disable Old Nagios Parameters Whining

Format:

disable_old_nagios_parameters_whining=<0/1>

Default:

disable_old_nagios_parameters_whining=0

If 1, disable all notice and warning messages at configuration checking

Timezone Option

Format:

use_timezone=<tz from tz database>

Default:

use_timezone=''

This option allows you to override the default timezone that this instance of Shinken runs in. Useful if you have
multiple instances of Shinken that need to run from the same server, but have different local times associated with
them. If not specified, Shinken will use the system configured timezone.

Environment Macros Option

Format:

enable_environment_macros=<0/1>

Default:

18 Chapter 3. Configuring Shinken

Shinken Documentation, Release 2.4

enable_environment_macros=1

This option determines whether or not the Shinken daemon will make all standard macros available as environment
variables to your check, notification, event hander, etc. commands. In large installations this can be problematic
because it takes additional CPU to compute the values of all macros and make them available to the environment. It
also cost a increase network communication between schedulers and pollers.

• 0 = Don’t make macros available as environment variables

• 1 = Make macros available as environment variables

Initial States Logging Option (Not implemented)

Format:

log_initial_states=<0/1>

Default:

log_initial_states=1

This variable determines whether or not Shinken will force all initial host and service states to be logged, even if they
result in an OK state. Initial service and host states are normally only logged when there is a problem on the first
check. Enabling this option is useful if you are using an application that scans the log file to determine long-term state
statistics for services and hosts.

• 0 = Don’t log initial states

• 1 = Log initial states

Event Handler during downtimes

Format:

no_event_handlers_during_downtimes=<0/1>

Default:

no_event_handlers_during_downtimes=0

This option determines whether or not Shinken will run event handlers when the host or service is in a scheduled
downtime.

• 0 = Launch event handlers (Nagios behavior)

• 1 = Don’t launch event handlers

References:

• http://www.mail-archive.com/shinken-devel@lists.sourceforge.net/msg01394.html

• https://github.com/naparuba/shinken/commit/9ce28d80857c137e5b915b39bbb8c1baecc821f9

3.2.2 Arbiter daemon part

The following parameters are common to all daemons.

3.2. Main Configuration File (shinken.cfg) Options 19

http://www.mail-archive.com/shinken-devel@lists.sourceforge.net/msg01394.html
https://github.com/naparuba/shinken/commit/9ce28d80857c137e5b915b39bbb8c1baecc821f9

Shinken Documentation, Release 2.4

Workdir

Format:

workdir=<directory>

Default :

workdir=/var/run/shinken/

This variable specify the working directory of the daemon. In the arbiter case, if the value is empty, the directory name
of lock_file parameter. See below

Arbiter Lock File

Defined in nagios.cfg file.

Format:

lock_file=<file_name>

Example:

lock_file=/var/lib/shinken/arbiterd.pid

This option specifies the location of the lock file that Shinken arbiter daemon should create when it runs as a daemon
(when started with the “-d” command line argument). This file contains the process id (PID) number of the running
arbiter process.

Local Log

Format:

local_log=<filename>

Default:

local_log=/var/log/shinken/arbiterd.log'

This variable specifies the log file for the daemon.

Log Level

Format:

log_level=[DEBUG,INFO,WARNING,ERROR,CRITICAL]

Default:

log_level=WARNING

This variable specifies which logs will be raised by the arbiter daemon. For others daemons, it can be defined in their
local *d.ini files.

20 Chapter 3. Configuring Shinken

Shinken Documentation, Release 2.4

Arbiter Daemon User

Defined in brokerd.ini, brokerd-windows.ini, pollerd.ini, pollerd-windows.ini, reactionnerd.ini, schedulerd.ini and
schedulerd-windows.ini.

Format:

shinken_user=username

Default:

shinken_user=<current user>

This is used to set the effective user that the Arbiter process (main process) should run as. After initial program
startup, Shinken will drop its effective privileges and run as this user.

Arbiter Daemon user Group

Defined in brokerd.ini, brokerd-windows.ini, pollerd.ini, pollerd-windows.ini, reactionnerd.ini, schedulerd.ini and
schedulerd-windows.ini.

Format:

shinken_group=groupname

Default:

shinken_group=<current group>

This is used to set the effective group of the user used to launch the arbiter daemon.

Modules directory

Format:

modules_dir=<direname>

Default:

modules_dir=/var/lib/shinken/modules

Path to the modules directory

Daemon Enabled

Format:

daemon_enabled=[0/1]

Default:

:: daemon_enabled=1

Set to 0 if you want to make this daemon (arbiter) NOT to run

3.2. Main Configuration File (shinken.cfg) Options 21

Shinken Documentation, Release 2.4

Use SSL

Format:

use_ssl=[0/1]

Default:

use_ssl=0

Use SSl or not. You have to enable it on other daemons too.

Ca Cert

Format:

ca_cert=<filename>

Default:

ca_cert=etc/certs/ca.pem

Certification Authority (CA) certificate

Warning: Put full paths for certs

Server Cert

Format:

server_cert=<filename>

Default:

server_cert=/etc/certs/server.cert

Server certificate for SSL

Warning: Put full paths for certs

Server Key

Format:

server_key=<filename>

Default:

server_key=/etc/certs/server.key

Server key for SSL

Warning: Put full paths for certs

22 Chapter 3. Configuring Shinken

Shinken Documentation, Release 2.4

Hard SSL Name Check

Format:

hard_ssl_name_check=[0/1]

Default:

hard_ssl_name_check=0

Enable SSL name check.

HTTP Backend

Format:

http_backend=[auto, cherrypy, swsgiref]

Default:

http_backend=auto

Specify which http_backend to use. Auto is better. If cherrypy3 is not available, it will fail back to swsgiref .. note::
Actually, if you specify something else than cherrypy or auto, it will fall into swsgiref

3.3 Object Configuration Overview

3.3.1 What Are Objects?

Objects are all the elements that are involved in the monitoring and notification logic. Types of objects include:

• Services

• Service Groups

• Hosts

• Host Groups

• Contacts

• Contact Groups

• Commands

• Time Periods

• Notification Escalations

• Notification and Execution Dependencies

More information on what objects are and how they relate to each other can be found below.

3.3.2 Where Are Objects Defined?

Objects can be defined in one or more configuration files and/or directories that you specify using the cfg_file and/or
cfg_dir directives in the main configuration file.

3.3. Object Configuration Overview 23

Shinken Documentation, Release 2.4

When you follow the Quickstart installation guide, several sample object configuration files are placed in
“/etc/shinken/”. Every object has now is own directory. You can use these sample files to see how object inheri-
tance works and learn how to define your own object definitions.

3.3.3 How Are Objects Defined?

Objects are defined in a flexible template format, which can make it much easier to manage your Shinken configuration
in the long term. Basic information on how to define objects in your configuration files can be found here.

Once you get familiar with the basics of how to define objects, you should read up on object inheritance, as it will
make your configuration more robust for the future. Seasoned users can exploit some advanced features of object
definitions as described in the documentation on object tricks.

3.3.4 Objects Explained

Some of the main object types are explained in greater detail below...

Hosts

Hosts are one of the central objects in the monitoring logic. Important attributes of hosts are as follows:

• Hosts are usually physical devices on your network (servers, workstations, routers, switches, printers, etc).

• Hosts have an address of some kind (e.g. an IP or MAC address).

• Hosts have one or more more services associated with them.

• Hosts can have parent/child relationships with other hosts, often representing real-world network connections,
which is used in the network reachability logic.

Host Groups

Host Groups are groups of one or more hosts. Host groups can make it easier to

• view the status of related hosts in the Shinken web interface and

• simplify your configuration through the use of object tricks.

Services

Services are one of the central objects in the monitoring logic. Services are associated with hosts and can be:

• Attributes of a host (CPU load, disk usage, uptime, etc.)

• Services provided by the host (“HTTP”, “POP3”, “FTP”, “SSH”, etc.)

• Other things associated with the host (“DNS” records, etc.)

Service Groups

Service Groups are groups of one or more services. Service groups can make it easier to

• view the status of related services in the Shinken web interface and

• simplify your configuration through the use of object tricks.

24 Chapter 3. Configuring Shinken

Shinken Documentation, Release 2.4

Contacts

Contacts are people involved in the notification process:

• Contacts have one or more notification methods (cellphone, pager, email, instant messaging, etc.)

• Contacts receive notifications for hosts and service they are responsible for

Contact Groups

Contact Groups are groups of one or more contacts. Contact groups can make it easier to define all the people who
get notified when certain host or service problems occur.

Timeperiods

Timeperiods are are used to control:

• When hosts and services can be monitored

• When contacts can receive notifications

Information on how timeperiods work can be found here.

Commands

Commands are used to tell Shinken what programs, scripts, etc. it should execute to perform:

• Host and service checks

• Notifications

• Event handlers

• and more...

3.4 Object Definitions

3.4.1 Introduction

One of the features of Shinken’ object configuration format is that you can create object definitions that inherit prop-
erties from other object definitions. An explanation of how object inheritance works can be found here. I strongly
suggest that you familiarize yourself with object inheritance once you read over the documentation presented below,
as it will make the job of creating and maintaining object definitions much easier than it otherwise would be. Also,
read up on the object tricks that offer shortcuts for otherwise tedious configuration tasks.

When creating and/or editing configuration files, keep the following in mind:

• Lines that start with a ‘”#”’ character are taken to be comments and are not processed

• Directive names are case-sensitive

3.4.2 Sample Configuration Files

Sample object configuration files are installed in the “/etc/shinken/” directory when you follow the quickstart installa-
tion guide.

3.4. Object Definitions 25

Shinken Documentation, Release 2.4

3.4.3 Object Types

• Host

• Host Group

• Service

• Service Group

• Contact

• Contact Group

• Time Period

• Command

• Service Dependency

• Service Escalation

• Host Dependency

• Host Escalation

• Extended Host Information

• Extended Service Information

• Realm

• Arbiter

• Scheduler

• Poller

• Reactionner

• Broker

3.5 Custom Object Variables

3.5.1 Introduction

Users often request that new variables be added to host, service, and contact definitions. These include variables
for “SNMP” community, MAC address, AIM username, Skype number, and street address. The list is endless. The
problem that I see with doing this is that it makes Nagios less generic and more infrastructure-specific. Nagios was
intended to be flexible, which meant things needed to be designed in a generic manner. Host definitions in Nagios, for
example, have a generic “address” variable that can contain anything from an IP address to human-readable driving
directions - whatever is appropriate for the user’s setup.

Still, there needs to be a method for admins to store information about their infrastructure components in their Nagios
configuration without imposing a set of specific variables on others. Nagios attempts to solve this problem by allowing
users to define custom variables in their object definitions. Custom variables allow users to define additional properties
in their host, service, and contact definitions, and use their values in notifications, event handlers, and host and service
checks.

26 Chapter 3. Configuring Shinken

Shinken Documentation, Release 2.4

3.5.2 Custom Variable Basics

There are a few important things that you should note about custom variables:

• Custom variable names must begin with an underscore (_) to prevent name collision with standard variables

• Custom variable names are case-insensitive

• Custom variables are inherited from object templates like normal variables

• Scripts can reference custom variable values with macros and environment variables

3.5.3 Examples

Here’s an example of how custom variables can be defined in different types of object definitions:

define host{
host_name linuxserver
_mac_address 00:06:5B:A6:AD:AA ; <-- Custom MAC_ADDRESS variable
_rack_number R32 ; <-- Custom RACK_NUMBER variable

...
}

define service{
host_name linuxserver
description Memory Usage
_SNMP_community public ; <-- Custom SNMP_COMMUNITY variable
_TechContact Jane Doe ; <-- Custom TECHCONTACT variable
....

}

define contact{
contact_name john
_AIM_username john16 ; <-- Custom AIM_USERNAME variable
_YahooID john32 ; <-- Custom YAHOOID variable
...

}

3.5.4 Custom Variables As Macros

Custom variable values can be referenced in scripts and executables that Nagios runs for checks, notifications, etc. by
using macros or environment variables.

In order to prevent name collision among custom variables from different object types, Nagios prepends “_HOST”,
“_SERVICE”, or “_CONTACT” to the beginning of custom host, service, or contact variables, respectively, in macro
and environment variable names. The table below shows the corresponding macro and environment variable names
for the custom variables that were defined in the example above.

3.5. Custom Object Variables 27

Shinken Documentation, Release 2.4

Object
Type

Variable Name Macro Name Environment Variable

Host MAC_ADDRESS $_HOSTMAC_ADDRESS$ NAGIOS__HOSTMAC_ADDRESS
Host RACK_NUMBER $_HOSTRACK_NUMBER$ NAGIOS__HOSTRACK_NUMBER
Service SNMP_COMMUNITY$_SERVICES-

NMP_COMMUNITY$
NA-
GIOS__SERVICESNMP_COMMUNITY

Service TECHCONTACT $_SERVICETECHCONTACT$ NAGIOS__SERVICETECHCONTACT
Contact AIM_USERNAME $_CONTAC-

TAIM_USERNAME$
NA-
GIOS__CONTACTAIM_USERNAME

Contact YAHOOID $_CONTACTYAHOOID$ NAGIOS__CONTACTYAHOOID

3.5.5 Custom Variables And Inheritance

Custom object variables are inherited just like standard host, service, or contact variables.

3.6 Main advanced configuration

3.6.1 Tuning and advanced parameters

Important: If you do not know how to change the values of theses parameters, don’t touch them :) (and ask for help
on the mailing list).

3.6.2 Performance data parameters

Performance Data Processor Command Timeout

Format:

perfdata_timeout=<seconds>

Example:

perfdata_timeout=5

This is the maximum number of seconds that Shinken will allow a host performance data processor command or
service performance data processor command to be run. If a command exceeds this time limit it will be killed and a
warning will be logged.

Performance Data Processing Option

Format:

process_performance_data=<0/1>

Example:

process_performance_data=1

This value determines whether or not Shinken will process host and service check performance data.

• 0 = Don’t process performance data

28 Chapter 3. Configuring Shinken

Shinken Documentation, Release 2.4

• 1 = Process performance data (default)

If you want to use tools like PNP, NagiosGrapher or Graphite set it to 1.

Host/Service Performance Data Processing Command

Format:

host_perfdata_command=<configobjects/command>
service_perfdata_command=<configobjects/command>

Example:

host_perfdata_command=process-host-perfdata
service_perfdata_command=process-service-perfdata

This option allows you to specify a command to be run after every host/service check to process host/service perfor-
mance data that may be returned from the check. The command argument is the short name of a command definition
that you define in your object configuration file. This command is only executed if the Performance Data Processing
Option option is enabled globally and if the “process_perf_data” directive in the host definition is enabled.

Host/Service Performance Data File

Format:

host_perfdata_file=<file_name>
service_perfdata_file=<file_name>

Example:

host_perfdata_file=/var/lib/shinken/host-perfdata.dat
service_perfdata_file=/var/lib/shinken/service-perfdata.dat

This option allows you to specify a file to which host/service performance data will be written after every host check.
Data will be written to the performance file as specified by the Host Performance Data File Template option or the
service one. Performance data is only written to this file if the Performance Data Processing Option option is enabled
globally and if the “process_perf_data” directive in the host definition is enabled.

Host Performance Data File Template

Format:

host_perfdata_file_template=<template>

Example:

host_perfdata_file_template=[HOSTPERFDATA]\t$TIMET$\t$HOSTNAME$\t$HOSTEXECUTIONTIME$\t$HOSTOUTPUT$\t$HOSTPERFDATA$

This option determines what (and how) data is written to the host performance data file. The template may contain
macros, special characters (t for tab, r for carriage return, n for newline) and plain text. A newline is automatically
added after each write to the performance data file.

Service Performance Data File Template

Format:

3.6. Main advanced configuration 29

Shinken Documentation, Release 2.4

service_perfdata_file_template=<template>

Example:

service_perfdata_file_template=[SERVICEPERFDATA]\t$TIMET$\t$HOSTNAME$\t$SERVICEDESC$\t$SERVICEEXECUTIONTIME$\t$SERVICELATENCY$\t$SERVICEOUTPUT$\t$SERVICEPERFDATA$

This option determines what (and how) data is written to the service performance data file. The template may contain
macros, special characters (t for tab, r for carriage return, n for newline) and plain text. A newline is automatically
added after each write to the performance data file.

Host/Service Performance Data File Mode

Format:

host_perfdata_file_mode=<mode>
service_perfdata_file_mode=<mode>

Example:

host_perfdata_file_mode=a
service_perfdata_file_mode=a

This option determines how the host performance data file (or the service one) is opened. Unless the file is a named
pipe you’ll probably want to use the default mode of append.

• a = Open file in append mode (default)

• w = Open file in write mode

• p = Open in non-blocking read/write mode (useful when writing to pipes)

Host/Service Performance Data File Processing Interval (Unused)

Format:

host_perfdata_file_processing_interval=<seconds>
service_perfdata_file_processing_interval=<seconds>

Example:

host_perfdata_file_processing_interval=0
service_perfdata_file_processing_interval=0

This option allows you to specify the interval (in seconds) at which the host performance data file (or the service one)
is processed using the host performance data file processing command. A value of 0 indicates that the performance
data file should not be processed at regular intervals.

Host/Service Performance Data File Processing Command (Unused)

Format:

host_perfdata_file_processing_command=<configobjects/command>
service_perfdata_file_processing_command=<configobjects/command>

Example:

30 Chapter 3. Configuring Shinken

Shinken Documentation, Release 2.4

host_perfdata_file_processing_command=process-host-perfdata-file
service_perfdata_file_processing_command=process-service-perfdata-file

This option allows you to specify the command that should be executed to process the host performance data
file (or the service one). The command argument is the short name of a command definition that you de-
fine in your object configuration file. The interval at which this command is executed is determined by the
host_perfdata_file_processing_interval directive.

3.6.3 Advanced scheduling parameters

Passive Host Checks Are SOFT Option (Not implemented)

Format:

passive_host_checks_are_soft=<0/1>

Example:

passive_host_checks_are_soft=1

This option determines whether or not Shinken will treat passive host checks as HARD states or SOFT states. By
default, a passive host check result will put a host into a HARD state type. You can change this behavior by enabling
this option.

• 0 = Passive host checks are HARD (default)

• 1 = Passive host checks are SOFT

Predictive Host/Service Dependency Checks Option (Unused)

Format:

enable_predictive_host_dependency_checks=<0/1>
enable_predictive_service_dependency_checks=<0/1>

Example:

enable_predictive_host_dependency_checks=1
enable_predictive_service_dependency_checks=1

This option determines whether or not Shinken will execute predictive checks of hosts/services that are being depended
upon (as defined in host/services dependencies) for a particular host/service when it changes state. Predictive checks
help ensure that the dependency logic is as accurate as possible. More information on how predictive checks work can
be found here.

• 0 = Disable predictive checks

• 1 = Enable predictive checks (default)

Orphaned Host/Service Check Option

Format:

check_for_orphaned_services=<0/1>
check_for_orphaned_hosts=<0/1>

3.6. Main advanced configuration 31

Shinken Documentation, Release 2.4

Example:

check_for_orphaned_services=1
check_for_orphaned_hosts=1

This option allows you to enable or disable checks for orphaned service/host checks. Orphaned checks are checks
which have been launched to pollers but have not had any results reported in a long time.

Since no results have come back in for it, it is not rescheduled in the event queue. This can cause checks to stop being
executed. Normally it is very rare for this to happen - it might happen if an external user or process killed off the
process that was being used to execute a check.

If this option is enabled and Shinken finds that results for a particular check have not come back, it will log an error
message and reschedule the check. If you start seeing checks that never seem to get rescheduled, enable this option
and see if you notice any log messages about orphaned services.

• 0 = Don’t check for orphaned service checks

• 1 = Check for orphaned service checks (default)

Soft State Dependencies Option (Not implemented)

Format: soft_state_dependencies=<0/1> Example: soft_state_dependencies=0

This option determines whether or not Shinken will use soft state information when checking host and service depen-
dencies. Normally it will only use the latest hard host or service state when checking dependencies. If you want it to
use the latest state (regardless of whether its a soft or hard state type), enable this option.

• 0 = Don’t use soft state dependencies (default)

• 1 = Use soft state dependencies

3.6.4 Performance tuning

Cached Host/Service Check Horizon

Format:

cached_host_check_horizon=<seconds>
cached_service_check_horizon=<seconds>

Example:

cached_host_check_horizon=15
cached_service_check_horizon=15

This option determines the maximum amount of time (in seconds) that the state of a previous host check is considered
current. Cached host states (from host/service checks that were performed more recently than the time specified by this
value) can improve host check performance immensely. Too high of a value for this option may result in (temporarily)
inaccurate host/service states, while a low value may result in a performance hit for host/service checks. Use a value
of 0 if you want to disable host/service check caching. More information on cached checks can be found here.

Tip: Nagios default is 15s, but it’s a tweak that make checks less accurate. So Shinken use 0s as a default. If you
have performances problems and you can’t add a new scheduler or poller, increase this value and start to buy a new
server because this won’t be magical.

32 Chapter 3. Configuring Shinken

Shinken Documentation, Release 2.4

Large Installation Tweaks Option

Format:

use_large_installation_tweaks=<0/1>

Example:

use_large_installation_tweaks=0

This option determines whether or not the Shinken daemon will take shortcuts to improve performance. These short-
cuts result in the loss of a few features, but larger installations will likely see a lot of benefit from doing so. If you can’t
add new satellites to manage the load (like new pollers), you can activate it. More information on what optimizations
are taken when you enable this option can be found here.

• 0 = Don’t use tweaks (default)

• 1 = Use tweaks

3.6.5 Flapping parameters

Flap Detection Option

Format:

enable_flap_detection=<0/1>

Example:

enable_flap_detection=1

This option determines whether or not Shinken will try and detect hosts and services that are “flapping”. Flapping
occurs when a host or service changes between states too frequently, resulting in a barrage of notifications being
sent out. When Shinken detects that a host or service is flapping, it will temporarily suppress notifications for that
host/service until it stops flapping.

More information on how flap detection and handling works can be found here.

• 0 = Don’t enable flap detection (default)

• 1 = Enable flap detection

Low Service/Host Flap Threshold

Format:

low_service_flap_threshold=<percent>
low_host_flap_threshold=<percent>

Example:

low_service_flap_threshold=25.0
low_host_flap_threshold=25.0

This option is used to set the low threshold for detection of host/service flapping. For more information on how flap
detection and handling works (and how this option affects things) read this.

3.6. Main advanced configuration 33

Shinken Documentation, Release 2.4

High Service/Host Flap Threshold

Format:

high_service_flap_threshold=<percent>
high_host_flap_threshold=<percent>

Example:

high_service_flap_threshold=50.0
high_host_flap_threshold=50.0

This option is used to set the high threshold for detection of host/service flapping. For more information on how flap
detection and handling works (and how this option affects things) read this.

Various commands Timeouts

Format:

event_handler_timeout=<seconds> # default: 30s
notification_timeout=<seconds> # default: 30s
ocsp_timeout=<seconds> # default: 15s
ochp_timeout=<seconds> # default: 15s

Example:

event_handler_timeout=60
notification_timeout=60
ocsp_timeout=5
ochp_timeout=5

This is the maximum number of seconds that Shinken will allow event handlers, notification, obsessive compulsive
service processor command or a Obsessive Compulsive Host Processor Command to be run. If an command exceeds
this time limit it will be killed and a warning will be logged.

There is often widespread confusion as to what this option really does. It is meant to be used as a last ditch mechanism
to kill off commands which are misbehaving and not exiting in a timely manner. It should be set to something high
(like 60 seconds or more for notification, less for oc*p commands), so that each event handler command normally
finishes executing within this time limit. If an event handler runs longer than this limit, Shinken will kill it off thinking
it is a runaway processes.

3.6.6 Old Obsess Over commands

Obsess Over Services Option

Format:

obsess_over_services=<0/1>

Example:

obsess_over_services=1

This value determines whether or not Shinken will “obsess” over service checks results and run the obsessive compul-
sive service processor command you define. I know _ funny name, but it was all I could think of. This option is useful
for performing distributed monitoring. If you’re not doing distributed monitoring, don’t enable this option.

• 0 = Don’t obsess over services (default)

34 Chapter 3. Configuring Shinken

Shinken Documentation, Release 2.4

• 1 = Obsess over services

Obsessive Compulsive Service Processor Command

Format:

ocsp_command=<configobjects/command>

Example:

ocsp_command=obsessive_service_handler

This option allows you to specify a command to be run after every service check, which can be useful in distributed
monitoring. This command is executed after any event handler or notification commands. The command argument is
the short name of a command definition that you define in your object configuration file.

It’s used nearly only for the old school distributed architecture. If you use it, please look at new architecture capabilities
that are far efficient than the old one. More information on distributed monitoring can be found here. This command is
only executed if the Obsess Over Services Option option is enabled globally and if the “obsess_over_service” directive
in the service definition is enabled.

Obsess Over Hosts Option

Format:

obsess_over_hosts=<0/1>

Example:

obsess_over_hosts=1

This value determines whether or not Shinken will “obsess” over host checks results and run the obsessive compulsive
host processor command you define. Same like the service one but for hosts :)

• 0 = Don’t obsess over hosts (default)

• 1 = Obsess over hosts

Obsessive Compulsive Host Processor Command

Format:

ochp_command=<configobjects/command>

Example:

ochp_command=obsessive_host_handler

This option allows you to specify a command to be run after every host check, which can be useful in distributed
monitoring. This command is executed after any event handler or notification commands. The command argument is
the short name of a command definition that you define in your object configuration file.

This command is only executed if the Obsess Over Hosts Option option is enabled globally and if the “ob-
sess_over_host” directive in the host definition is enabled.

3.6. Main advanced configuration 35

Shinken Documentation, Release 2.4

3.6.7 Freshness check

Host/Service Freshness Checking Option

Format:

check_service_freshness=<0/1>
check_host_freshness=<0/1>

Example:

check_service_freshness=0
check_host_freshness=0

This option determines whether or not Shinken will periodically check the “freshness” of host/service checks. Enabling
this option is useful for helping to ensure that passive service checks are received in a timely manner. More information
on freshness checking can be found here.

• 0 = Don’t check host/service freshness

• 1 = Check host/service freshness (default)

Host/Service Freshness Check Interval

Format:

service_freshness_check_interval=<seconds>
host_freshness_check_interval=<seconds>

Example:

service_freshness_check_interval=60
host_freshness_check_interval=60

This setting determines how often (in seconds) Shinken will periodically check the “freshness” of host/service check
results. If you have disabled host/service freshness checking (with the check_service_freshness option), this option
has no effect. More information on freshness checking can be found here.

Additional Freshness Threshold Latency Option (Not implemented)

Format:

additional_freshness_latency=<#>

Example:

additional_freshness_latency=15

This option determines the number of seconds Shinken will add to any host or services freshness threshold it automat-
ically calculates (e.g. those not specified explicitly by the user). More information on freshness checking can be found
here.

Human format for log timestamp

Say if the timespam should be a unixtime (default) or a human read one.

Format

36 Chapter 3. Configuring Shinken

Shinken Documentation, Release 2.4

human_timestamp_log=[0/1]

Example

human_timestamp_log=0

This directive is used to specify if the timespam before the log entry should be in unixtime (like [1302874960]) which
is the default, or a human readable one (like [Fri Apr 15 15:43:19 2011]).

Beware : if you set the human format, some automatic parsing log tools won’t work!

Resource File

Defined in shinken.cfg file.

Format

resource_file=<file_name>

Example:

resource_file=/etc/shinken/resource.cfg

This is used to specify an optional resource file that can contain “$USERn$” Understanding Macros and How They
Work definitions. “$USERn$” macros are useful for storing usernames, passwords, and items commonly used in
command definitions (like directory paths). A classical variable used is $USER1$, used to store the plugins path,
“/usr/lib/nagios/plugins” on a classic installation.

Triggers directory

Format

triggers_dir=<directory>

Example:

triggers_dir=triggers.d

Used to specify the trigger directory. It will open the directory and look recursively for .trig files.

Bypass security checks for the Arbiter daemon

Defined in brokerd.ini, brokerd-windows.ini, pollerd.ini, pollerd-windows.ini, reactionnerd.ini, schedulerd.ini and
schedulerd-windows.ini.

Format:

idontcareaboutsecurity=<0/1>

Example:

idontcareaboutsecurity=0

This option determines whether or not Shinken will allow the Arbiter daemon to run under the root account. If this
option is disabled, Shinken will bailout if the nagios_user or the nagios_group is configured with the root account.

The Shinken daemons do not need root right. Without a good reason do not run thems under this account!

3.6. Main advanced configuration 37

Shinken Documentation, Release 2.4

• 0 = Be a responsible administrator

• 1 = Make crazy your security manager

Notifications Option

Format:

enable_notifications=<0/1>

Example:

enable_notifications=1

This option determines whether or not Shinken will send out notifications. If this option is disabled, Shinken will not
send out notifications for any host or service.

Values are as follows:

• 0 = Disable notifications

• 1 = Enable notifications (default)

Log Rotation Method (Not fully implemented)

Format:

log_rotation_method=<n/h/d/w/m>

Example:

log_rotation_method=d

This is the rotation method that you would like Shinken to use for your log file on the broker server. Values are as
follows:

• n = None (don’t rotate the log - this is the default)

• h = Hourly (rotate the log at the top of each hour)

• d = Daily (rotate the log at midnight each day)

• w = Weekly (rotate the log at midnight on Saturday)

• m = Monthly (rotate the log at midnight on the last day of the month)

Tip: From now, only the d (Daily) parameter is managed.

External Command Check Option

Format:

check_external_commands=<0/1>

Example:

check_external_commands=1

This option determines whether or not Shinken will check the External Command File for commands that should be
executed with the arbiter daemon. More information on external commands can be found here.

38 Chapter 3. Configuring Shinken

Shinken Documentation, Release 2.4

• 0 = Don’t check external commands (default)

• 1 = Check external commands (default)

Note: FIX ME : Find the real default value

External Command File

Defined in nagios.cfg file.

Format:

command_file=<file_name>

Example:

command_file=/var/lib/shinken/rw/nagios.cmd

This is the file that Shinken will check for external commands to process with the arbiter daemon. The command
CGI writes commands to this file. The external command file is implemented as a named pipe (FIFO), which is created
when Nagios starts and removed when it shuts down. More information on external commands can be found here.

Tip: This external command file is not managed under Windows system. Please use others way to send commands
like the LiveStatus module for example.

State Retention Option (Not implemented)

Format:

retain_state_information=<0/1>

Example:

retain_state_information=1

This option determines whether or not Shinken will retain state information for hosts and services between program restarts. If you enable this option, you should supply a value for the State Retention File variable. When enabled, Shinken will save all state information for hosts and service before it shuts down (or restarts) and will read in previously saved state information when it starts up again.

• 0 = Don’t retain state information

• 1 = Retain state information (default)

Note: Idea to approve : Mark it as Unused : Related topic. A Shinken module replace it.

State Retention File

Format:

state_retention_file=<file_name>

Example:

state_retention_file=/var/lib/shinken/retention.dat

3.6. Main advanced configuration 39

http://www.shinken-monitoring.org/forum/index.php/topic,21.0.html

Shinken Documentation, Release 2.4

This is the file that Shinken scheduler daemons will use for storing status, downtime, and comment information
before they shuts down. When Shinken is restarted it will use the information stored in this file for setting the initial
states of services and hosts before it starts monitoring anything. In order to make Shinken retain state information
between program restarts, you must enable the State Retention Option option.

Important: The file format is not the same between Shinken and Nagios! The retention.dat generated with Nagios
will not load into Shinken.

3.6.8 Scheduling parameters

Service/Host Check Execution Option

Format:

execute_service_checks=<0/1>
execute_host_checks=<0/1>

Example:

execute_service_checks=1
execute_host_checks=1

This option determines whether or not Shinken will execute service/host checks. Do not change this option unless you
use a old school distributed architecture. And even if you do this, please change your architecture with a cool new one
far more efficient.

• 0 = Don’t execute service checks

• 1 = Execute service checks (default)

Passive Service/Host Check Acceptance Option

Format:

accept_passive_service_checks=<0/1>
accept_passive_host_checks=<0/1>

Example:

accept_passive_service_checks=1
accept_passive_host_checks=1

This option determines whether or not Shinken will accept passive service/host checks. If this option is disabled,
Nagios will not accept any passive service/host checks.

• 0 = Don’t accept passive service/host checks

• 1 = Accept passive service/host checks (default)

Event Handler Option

Format:

enable_event_handlers=<0/1>

Example:

40 Chapter 3. Configuring Shinken

Shinken Documentation, Release 2.4

enable_event_handlers=1

This option determines whether or not Shinken will run event handlers.

• 0 = Disable event handlers

• 1 = Enable event handlers (default)

Syslog Logging Option

Format:

use_syslog=<0/1>

Example:

use_syslog=1

This variable determines whether messages are logged to the syslog facility on your local host. Values are as follows:

• 0 = Don’t use syslog facility

• 1 = Use syslog facility

Tip: This is a Unix Os only option.

Notification Logging Option

Format:

log_notifications=<0/1>

Example:

log_notifications=1

This variable determines whether or not notification messages are logged. If you have a lot of contacts or regular
service failures your log file will grow (let say some Mo by day for a huge configuration, so it’s quite OK for nearly
every one to log them). Use this option to keep contact notifications from being logged.

• 0 = Don’t log notifications

• 1 = Log notifications

Service/Host Check Retry Logging Option (Not implemented)

Format:

log_service_retries=<0/1>
log_host_retries=<0/1>

Example:

log_service_retries=0
log_host_retries=0

3.6. Main advanced configuration 41

Shinken Documentation, Release 2.4

This variable determines whether or not service/host check retries are logged. Service check retries occur when a
service check results in a non-OK state, but you have configured Shinken to retry the service more than once before
responding to the error. Services in this situation are considered to be in “soft” states. Logging service check retries is
mostly useful when attempting to debug Shinken or test out service/host event handlers.

• 0 = Don’t log service/host check retries (default)

• 1 = Log service/host check retries

Event Handler Logging Option

Format:

log_event_handlers=<0/1>

Example:

log_event_handlers=1

This variable determines whether or not service and host event handlers are logged. Event handlers are optional
commands that can be run whenever a service or hosts changes state. Logging event handlers is most useful when
debugging Shinken or first trying out your event handler scripts.

• 0 = Don’t log event handlers

• 1 = Log event handlers

External Command Logging Option

Format:

log_external_commands=<0/1>

Example:

log_external_commands=1

This variable determines whether or not Shinken will log external commands that it receives.

• 0 = Don’t log external commands

• 1 = Log external commands (default)

Passive Check Logging Option (Not implemented)

Format:

log_passive_checks=<0/1>

Example:

log_passive_checks=1

This variable determines whether or not Shinken will log passive host and service checks that it receives from the
external command file.

• 0 = Don’t log passive checks

• 1 = Log passive checks (default)

42 Chapter 3. Configuring Shinken

Shinken Documentation, Release 2.4

Global Host/Service Event Handler Option (Not implemented)

Format:

global_host_event_handler=<configobjects/command>
global_service_event_handler=<configobjects/command>

Example:

global_host_event_handler=log-host-event-to-db
global_service_event_handler=log-service-event-to-db

This option allows you to specify a host event handler command that is to be run for every host state change. The
global event handler is executed immediately prior to the event handler that you have optionally specified in each host
definition. The command argument is the short name of a command that you define in your Object Configuration
Overview. The maximum amount of time that this command can run is controlled by the Event Handler Timeout
option. More information on event handlers can be found here.

Such commands should not be so useful with the new Shinken distributed architecture. If you use it, look if you can
avoid it because such commands will kill your performances.

Timing Interval Length

Format:

interval_length=<seconds>

Example:

interval_length=60

This is the number of seconds per “unit interval” used for timing in the scheduling queue, re-notifications, etc. “Units
intervals” are used in the object configuration file to determine how often to run a service check, how often to re-notify
a contact, etc.

The default value for this is set to 60, which means that a “unit value” of 1 in the object configuration file will mean
60 seconds (1 minute).

Tip: Set this option top 1 is not a good thing with Shinken. It’s not design to be a hard real time (<5seconds)
monitoring system. Nearly no one need such hard real time (maybe only the Nuclear center or a market place like the
London Exchange...).

3.6.9 Old CGI related parameter

If you are using the old CGI from Nagios, please migrate to a new WebUI. For historical perspective you can find
information on the specific CGI parameters.

3.6.10 Unused parameters

The below parameters are inherited from Nagios but are not used in Shinken. You can defined them but if you don’t it
will be the same :)

They are listed on another page unused Nagios parameters.

3.6. Main advanced configuration 43

Shinken Documentation, Release 2.4

3.6.11 All the others :)

Date Format (Not implemented)

Format:

date_format=<option>

Example:

date_format=us

This option allows you to specify what kind of date/time format Shinken should use in date/time macros. Possible
options (along with example output) include:

Option Output Format Sample Output
us MM/DD/YYYY HH:MM:SS 06/30/2002 03:15:00
euro DD/MM/YYYY HH:MM:SS 30/06/2002 03:15:00
iso8601 YYYY-MM-DD HH:MM:SS 2002-06-30 03:15:00
strict-iso8601 YYYY-MM-DDTHH:MM:SS 2002-06-30T03:15:00

Illegal Object Name Characters

Format:

illegal_object_name_chars=<chars...>

Example:

illegal_object_name_chars=`-!$%^&*"|'<>?,()=

This option allows you to specify illegal characters that cannot be used in host names, service descriptions, or names of
other object types. Shinken will allow you to use most characters in object definitions, but I recommend not using the
characters shown in the example above. Doing may give you problems in the web interface, notification commands,
etc.

Illegal Macro Output Characters

Format:

illegal_macro_output_chars=<chars...>

Example:

illegal_macro_output_chars=`-$^&"|'<>

This option allows you to specify illegal characters that should be stripped from macros before being used in notifica-
tions, event handlers, and other commands. This DOES NOT affect macros used in service or host check commands.
You can choose to not strip out the characters shown in the example above, but I recommend you do not do this. Some
of these characters are interpreted by the shell (i.e. the backtick) and can lead to security problems. The following
macros are stripped of the characters you specify:

• “$HOSTOUTPUT$”

• “$HOSTPERFDATA$”

• “$HOSTACKAUTHOR$”

44 Chapter 3. Configuring Shinken

Shinken Documentation, Release 2.4

• “$HOSTACKCOMMENT$”

• “$SERVICEOUTPUT$”

• “$SERVICEPERFDATA$”

• “$SERVICEACKAUTHOR$”

• “$SERVICEACKCOMMENT$”

Regular Expression Matching Option (Not implemented)

Format:

use_regexp_matching=<0/1>

Example:

use_regexp_matching=0

This option determines whether or not various directives in your Object Configuration Overview will be processed as
regular expressions. More information on how this works can be found here.

• 0 = Don’t use regular expression matching (default)

• 1 = Use regular expression matching

True Regular Expression Matching Option (Not implemented)

Format:

use_true_regexp_matching=<0/1>

Example:

use_true_regexp_matching=0

If you’ve enabled regular expression matching of various object directives using the Regular Expression Matching
Option option, this option will determine when object directives are treated as regular expressions. If this option is
disabled (the default), directives will only be treated as regular expressions if they contain *, ?, +, or .. If this option
is enabled, all appropriate directives will be treated as regular expression _ be careful when enabling this! More
information on how this works can be found here.

• 0 = Don’t use true regular expression matching (default)

• 1 = Use true regular expression matching

Administrator Email Address (unused)

Format:

admin_email=<email_address>

Example:

admin_email=root@localhost.localdomain

This is the email address for the administrator of the local machine (i.e. the one that Shinken is running on). This
value can be used in notification commands by using the “$ADMINEMAIL$” macro.

3.6. Main advanced configuration 45

Shinken Documentation, Release 2.4

Administrator Pager (unused)

Format:

admin_pager=<pager_number_or_pager_email_gateway>

Example:

admin_pager=pageroot@localhost.localdomain

This is the pager number (or pager email gateway) for the administrator of the local machine (i.e. the one that Shinken
is running on). The pager number/address can be used in notification commands by using the $ADMINPAGER$
macro.

Shinken.io api_key

Format:

api_key=<api_key>

Example:

api_key=AZERTYUIOP

This is the api_key/scret to exchange with shinken.io and especially the kernel.shinken.io service that will print your
shinken metrics. To enable it you must fill the api_key and secret parameters. You must register to http://shinken.io
and look at your profile http://shinken.io/~ for your api_key and your secret.

Shinken.io secret

Format:

secret=<secret>

Example:

secret=QSDFGHJ

This is the api_key/scret to exchange with shinken.io and especially the kernel.shinken.io service that will print your
shinken metrics. To enable it you must fill the api_key and secret parameters. You must register to http://shinken.io
and look at your profile http://shinken.io/~ for your api_key and your secret.

Statsd host

Format:

statsd_host=<host or ip>

Example:

statsd_host=localhost

Configure your local statsd daemon address.

46 Chapter 3. Configuring Shinken

http://shinken.io
http://shinken.io/~
http://shinken.io
http://shinken.io/~

Shinken Documentation, Release 2.4

Statsd port

Format:

statsd_port=<int>

Example:

statsd_port=8125

Configure your local statsd daemon port. Notice that the port is in UDP

Statsd prefix

Format:

statsd_prefix=<string>

Example:

statsd_prefix=shinken

The prefix to add before all your stats so you will find them easily in graphite

Statsd enabled (or not)

Format:

statsd_enabled=<0/1>

Example:

statsd_enabled=0

Enable or not the statsd communication. By default it’s disabled.

3.6. Main advanced configuration 47

Shinken Documentation, Release 2.4

48 Chapter 3. Configuring Shinken

CHAPTER 4

Running Shinken

49

Shinken Documentation, Release 2.4

4.1 Verifying Your Configuration

Every time you modify your Configuration, you should run a sanity check on them. It is important to do this before
you (re)start Shinken, as Shinken will shut down if your configuration contains errors.

Note: In recent Shinken versions, a shinken reload will check your configuration before restarting the arbiter:
/etc/init.d/shinken reload

4.1.1 How to verify the configuration

In order to verify your configuration, run Shinken-arbiter with the “-v” command line option like so:

linux:~ # /usr/bin/shinken-arbiter -v -c /etc/shinken/shinken.cfg

If you’ve forgotten to enter some critical data or misconfigured things, Shinken will spit out a warning or error message
that should point you to the location of the problem. Error messages generally print out the line in the configuration
file that seems to be the source of the problem. On errors, Shinken will exit the pre-flight check. If you get any error
messages you’ll need to go and edit your configuration files to remedy the problem. Warning messages can generally
be safely ignored, since they are only recommendations and not requirements.

4.1.2 Important caveats

1. Shinken will not check the syntax of module variables

2. Shinken will not check the validity of data passed to modules

3. Shinken will NOT notify you if you mistyped an expected variable, it will treat it as a custom variable.

4. Shinken sometimes uses variables that expect lists, the order of items in lists is important, check the relevant
documentation

4.1.3 How to apply your changes

Once you’ve verified your configuration files and fixed any errors you can go ahead and reload or (re)start Shinken.

4.2 Starting and Stopping Shinken

There’s more than one way to start, stop, and restart Shinken. Here are some of the more common ones...

In recent Shinken versions, you can use the init script to reload Shinken: your configuration will be checked before
restarting the arbiter.

Always make sure you verify your configuration before you (re)start Shinken.

4.2.1 Starting Shinken

• Init Script: The easiest way to start the Shinken daemon is by using the init script like so:

linux:~ # /etc/rc.d/init.d/shinken start

• Manually: You can start the Shinken daemon manually with the “-d” command line option like so:

50 Chapter 4. Running Shinken

Shinken Documentation, Release 2.4

linux:~ # /usr/bin/shinken/shinken-scheduler -d -c /etc/shinken/daemons/schedulerd.ini
linux:~ # /usr/bin/shinken/shinken-poller -d -c /etc/shinken/daemons/pollerd.ini
linux:~ # /usr/bin/shinken/shinken-reactionner -d -c /etc/shinken/daemons/reactionnerd.ini
linux:~ # /usr/bin/shinken/shinken-broker -d -c /etc/shinken/daemons/brokerd.ini
linux:~ # /usr/bin/shinken/shinken-arbiter -d -c /etc/shinken/shinken.cfg

Important: Enabling debugging output under windows requires changing registry values associated with Shinken

4.2.2 Restarting Shinken

Restarting/reloading is nececessary when you modify your configuration files and want those changes to take effect.

• Init Script: The easiest way to restart the Shinken daemon is by using the init script like so:

linux:~ # /etc/rc.d/init.d/shinken restart

• Manually: You can restart the Shinken process by sending it a SIGTERM signal like so:

linux:~ # kill <configobjects/arbiter_pid>
linux:~ # /usr/bin/shinken-arbiter -d -c /etc/shinken/shinken.cfg

4.2.3 Stopping Shinken

• Init Script: The easiest way to stop the Shinken daemons is by using the init script like so:

linux:~ # /etc/rc.d/init.d/shinken stop

• Manually: You can stop the Shinken process by sending it a SIGTERM signal like so:

linux:~ # kill <configobjects/arbiter_pid> <configobjects/scheduler_pid> <configobjects/poller_pid> <configobjects/reactionner_pid> <configobjects/broker_pid>

4.2. Starting and Stopping Shinken 51

Shinken Documentation, Release 2.4

52 Chapter 4. Running Shinken

CHAPTER 5

The Basics

53

Shinken Documentation, Release 2.4

5.1 Setting up a basic Shinken Configuration

5.1.1 Default Shinken configuration

If you followed the 10 Minute Shinken Installation Guide tutorial you were able to install and launch Shinken.

The default configuration deployed with the Shinken sources contains:

• one arbiter

• one scheduler

• one poller

• one reactionner

• one broker

• one receiver (commented out)

All these elements must have a basic configuration. The Arbiter must know about the other daemons and how to
communicate with them, just as the other daemons need to know on which TCP port they must listen on.

5.1.2 Configure the Shinken Daemons

The schedulers, pollers, reactionners and brokers daemons need to know in which directory to work on, and on which
TCP port to listen. That’s all.

Note: If you plan on using the default directories, user (shinken) and tcp port you shouldn’t have to edit these files.

Each daemon has one configuration file. The default location is /etc/shinken/.

Important: Remember that all daemons can be on different servers: the daemons configuration files need to be on
the server which is running the daemon, not necessarily on every server

Let’s see what it looks like:

$cat /etc/shinken/daemons/schedulerd.ini

[daemon]
workdir=/var/lib/shinken
pidfile=%(workdir)s/schedulerd.pid
port=7768
host=0.0.0.0

daemon_enabled=1

Optional configurations

user=shinken
group=shinken
idontcareaboutsecurity=0
use_ssl=0
#certs_dir=etc/certs
#ca_cert=etc/certs/ca.pem
#server_cert=etc/certs/server.pem
hard_ssl_name_check=0
use_local_log=1

54 Chapter 5. The Basics

Shinken Documentation, Release 2.4

local_log=brokerd.log
log_level=INFO
max_queue_size=100000

So here we have a scheduler:

• workdir: Working directory of the daemon. By default /var/lib/shinken

• pidfile: PID file of the daemon (so we can kill it :)). By default /var/lib/shinken/schedulerd.pid for a scheduler.

• port: TCP port to listen to. By default:

– scheduler: 7768

– poller: 7771

– reactionner: 7769

– broker: 7772

– arbiter: 7770 (the arbiter configuration will be seen later)

• host: IP interface to listen on. The default 0.0.0.0 means all interfaces.

• user: User used by the daemon to run. By default shinken.

• group: Group of the user. By default shinken.

• idontcareaboutsecurity: If set to 1, you can run it under the root account. But seriously: do not do this. The
default is 0 of course.

• daemon_enabled : If set to 0, the daemon won’t run. For example, in distributed setups where you only need a
poller.

• use_ssl=0

• #certs_dir=etc/certs

• #ca_cert=etc/certs/ca.pem

• #server_cert=etc/certs/server.pem

• hard_ssl_name_check=0

• use_local_log=1 : Log all messages that match the log_level for this daemon in a local directory.

• local_log=brokerd.log : Name of the log file where to save the logs.

• log_level=INFO : Log_level that will be permitted to be logger. Warning permits Warning, Error, Critical to be
logged. INFO by default.

• max_queue_size=100000 : If a module gets a brok queue() higher than this value, it will be killed and restarted.
Set to 0 to disable it.

5.1.3 Daemon declaration in the global configuration

Now each daemon knows in which directory to run, and on which tcp port to listen. A daemon is a resource in the
Shinken architecture. Such resources must be declared in the global configuration (where the Arbiter is) for them to
be utilized.

The global configuration file is: /etc/shinken/shinken.cfg

The daemon declarations are quite simple: each daemon is represented by an object. The information contained in the
daemon object are network parameters about how its resources should be treated (e.g. is it a spare, ...).

Each objects type corresponds to a daemon:

5.1. Setting up a basic Shinken Configuration 55

Shinken Documentation, Release 2.4

• arbiter

• scheduler

• poller

• reactionner

• broker

• receiver

The names were chosen to clearly represent their roles. :)

They have these parameters in common:

• *_name: name of the resource

• address: IP or DNS address to connect to the daemon

• port: I think you can find it on your own by now :)

• [spare]: 1 or 0, is a spare or not. See advanced features for this.

• [realm]: realm membership See advanced features for this.

• [manage_sub_realms]: whether or not to manage sub realms. See advanced features for this.

• [modules]: modules used by the daemon. See below.

Special parameters

Some daemons have special parameters:

For the arbiter:

• host_name: hostname of the server where the arbiter is installed. It’s mandatory for a high availability
environment (2 arbiters or more).

For pollers:

• poller_tags: “tags” that the poller manages. See advanced features for this.

Module objects

All daemons can use modules. In the brokers case, they are mandatory for it to actually accomplish a task.

Modules have some common properties:

• module_name: module name called by the resource.

• module_type: module type of the module. It’s a fixed value given by the module.

• other options: each module can have specific parameters. See the respective module documentation to
learn more about them.

Module references, list of overall modules:

• Arbiter modules

• Scheduler modules

• Broker modules

• Receiver modules

56 Chapter 5. The Basics

Shinken Documentation, Release 2.4

• Pollers modules

• Reactionner modules

Configuration example

Here is an example of a simple configuration (which you already used without knowing it during the 10min installation
tutorial). It has been kept to the strict minimum, with only one daemon for each type. There is no load distribution or
high availability, but you’ll get the picture more easily.

Here, we have a server named server-1 that has 192.168.0.1 as its IP address:

define arbiter{
arbiter_name arbiter-1
host_name server-1
address 192.168.0.1
port 7770
spare 0

}

define scheduler{
scheduler_name scheduler-1
address 192.168.0.1
port 7768
spare 0

}

define reactionner{
reactionner_name reactionner-1
address 192.168.0.1
port 7769
spare 0

}

define poller{
poller_name poller-1
address 192.168.0.1
port 7771
spare 0

}

define broker{
broker_name broker-1
address 192.168.0.1
port 7772
spare 0
modules Status-Dat,Simple-log

}

define module{
module_name Simple-log
module_type simple_log
path /var/lib/shinken/shinken.log

}

define module{
module_name Status-Dat
module_type status_dat

5.1. Setting up a basic Shinken Configuration 57

Shinken Documentation, Release 2.4

status_file /var/lib/shinken/status.data
object_cache_file /var/lib/shinken/objects.cache
status_update_interval 15 ; update status.dat every 15s

}

See? That was easy. And don’t worry about forgetting one of them: if there is a missing daemon type, Shinken
automatically adds one locally with a default address/port configuration.

Removing unused configurations

The sample shinken.cfg file has all possible modules in addition to the basic daemon declarations.

• Backup your shinken.cfg file.

• Delete all unused modules from your configuration file

• Ex. If you do not use the openldap module, delete it from the file

This will make any warnings or errors that show up in your log files more pertinent. This is because the modules, if
declared will get loadedup even if they are not use in your Modules declaration of your daemons.

If you ever lose your shinken.cfg, you can simply go to the shinken github repository and download the file.

Launch all daemons

To launch daemons, simply type:

daemon_path -d -c daemon_configuration.ini

The command lines arguments are:

• -c, –config: Config file.

• -d, –daemon: Run in daemon mode

• -r, –replace: Replace previous running scheduler

• -h, –help: Print detailed help screen

• –debug: path of the debug file

So a standard launch of the resources looks like:

/usr/bin/shinken-scheduler -d -c /etc/shinken/schedulerd.ini
/usr/bin/shinken-poller -d -c /etc/shinken/pollerd.ini
/usr/bin/shinken-reactionner -d -c /etc/shinken/reactionnerd.ini
/usr/bin/shinken-broker -d -c /etc/shinken/brokerd.ini

Now we can start the arbiter with the global configuration:

#First we should check the configuration for errors
python bin/shinken-arbiter -v -c etc/shinken.cfg

#then, we can really launch it
python bin/shinken-arbiter -d -c etc/shinken.cfg

Now, you’ve got the same thing you had when you launched bin/launch_all.sh script 8-) (but now you know what
you’re doing)

58 Chapter 5. The Basics

Shinken Documentation, Release 2.4

5.1.4 What’s next

You are ready to continue to the next section, get DATA IN Shinken.

If you feel in the mood for testing even more shinken features, now would be the time to look at advanced_features to
play with distributed and high availability architectures!

5.2 Monitoring Plugins

5.2.1 Introduction

Shinken includes a set of scalable internal mechanisms for checking the status of hosts and services on your network.
These are called modules and can be loaded by the various Shinken daemons involved in data acquisition (Poller
daemons, Receiver daemons, Arbiter Daemon) Shinken also relies on external programs (called check plugins) to
monitor a very wide variety of devices, applications and networked services.

5.2.2 What Are Plugins?

Plugins are compiled executables or scripts (Perl scripts, shell scripts, etc.) that can be run from a command line to
check the status of a host or service. Shinken uses the results from plugins to determine the current status of hosts and
services on your network and obtain performance data about the monitored service.

Shinken will execute a plugin whenever there is a need to check the status of a service or host. The plugin does
something (notice the very general term) to perform the check and then simply returns the results to Shinken. It will
process the results that it receives from the plugin and take any necessary actions (running event handlers, sending out
notifications, etc).

5.2.3 Shinken integrated data acquisition modules

These replace traditional unscalable plugins with high performance variants that are more tightly coupled with
Shinken.

Integrated Shinken data acquisition modules support the following protocols:

• NRPE

• SNMP

5.2. Monitoring Plugins 59

Shinken Documentation, Release 2.4

5.2.4 Plugins As An Abstraction Layer

DEPRECATED IMAGE - TODO Replace with the Shinken specific architecture diagram.

Plugins act as an abstraction layer between the monitoring logic present in the Shinken daemon and the actual services
and hosts that are being monitored.

The upside of this type of plugin architecture is that you can monitor just about anything you can think of. If you can
automate the process of checking something, you can monitor it with Shinken. There are already literally thousands
of plugins that have been created in order to monitor basic resources such as processor load, disk usage, ping rates,
etc. If you want to monitor something else, take a look at the documentation on writing plugins and roll your own. It’s
simple!

The downside to this type of plugin architecture is the fact that Shinken has absolutely no idea about what is monitored.
You could be monitoring network traffic statistics, data error rates, room temperate, CPU voltage, fan speed, processor
load, disk space, or the ability of your super-fantastic toaster to properly brown your bread in the morning... Shinken
doesn’t understand the specifics of what’s being monitored - it just tracks changes in the state of those resources. Only
the plugins know exactly what they’re monitoring and how to perform the actual checks.

5.2.5 What Plugins Are Available?

There are plugins to monitor many different kinds of devices and services.

They use basic monitoring protocols including:

• WMI, SNMP, SSH, NRPE, TCP, UDP, ICMP, OPC, LDAP and more

They can monitor pretty much anything:

• Unix/Linux, Windows, and Netware Servers

• Routers, Switches, VPNs

• Networked services: “HTTP”, “POP3”, “IMAP”, “FTP”, “SSH”, “DHCP”

• CPU Load, Disk Usage, Memory Usage, Current Users

• Applications, databases, logs and more.

60 Chapter 5. The Basics

Shinken Documentation, Release 2.4

5.2.6 Obtaining Plugins

Shinken also organizes monitoring configuration packages. These are pre-built for fast no nonsense deployments. They
include the check command definitions, service templates, host templates, discovery rules and integration hooks to the
Community web site. The integration with the community web site permits deployment and updates of monitoring
packs.

Get started with Shinken Monitoring Packages “Packs” today.

The plugins themselves are not distributed with Shinken, but you can download the official Monitoring-plugins and
many additional plugins created and maintained by Nagios users from the following locations:

• Monitoring Plugins Project: https://www.monitoring-plugins.org/

• Nagios Downloads Page: http://www.nagios.org/download/

• NagiosExchange.org: http://www.nagiosexchange.org/

5.2.7 How Do I Use Plugin X?

Most plugins will display basic usage information when you execute them using “-h” or “–help” on the command
line. For example, if you want to know how the check_http plugin works or what options it accepts, you should try
executing the following command:

./check_http --help

5.2.8 Plugin API

You can find information on the technical aspects of plugins, as well as how to go about creating your own custom
plugins here.

5.3 Understanding Macros and How They Work

5.3.1 Macros

One of the main features that make Shinken so flexible is the ability to use macros in command defintions. Macros
allow you to reference information from hosts, services, and other sources in your commands.

5.3.2 Macro Substitution - How Macros Work

Before Shinken executes a command, it will replace any macros it finds in the command definition with their corre-
sponding values. This macro substitution occurs for all types of commands that Shinken executes - host and service
checks, notifications, event handlers, etc.

Certain macros may themselves contain other macros. These include the “$HOSTNOTES$”, “$HOSTNOTESURL$”,
“$HOSTACTIONURL$”, “$SERVICENOTES$”, “$SERVICENOTESURL$”, and “$SERVICEACTIONURL$”
macros.

Tip: If, you need to have the ‘$’ character in one of your command (and not referring to a macro), please put “$$”
instead. Shinken will replace it well

5.3. Understanding Macros and How They Work 61

https://www.monitoring-plugins.org/
http://www.nagios.org/download/
http://www.nagiosexchange.org/

Shinken Documentation, Release 2.4

5.3.3 Example 1: Host Address Macro

When you use host and service macros in command definitions, they refer to values for the host or service for which
the command is being run. Let’s try an example. Assuming we are using a host definition and a check_ping command
defined like this:

define host{
host_name linuxbox
address 192.168.1.2
check_command check_ping
...

}

define command{
command_name check_ping
command_line /var/lib/shinken/libexec/check_ping -H $HOSTADDRESS$ -w 100.0,90% -c 200.0,60%

}

the expanded/final command line to be executed for the host’s check command would look like this:

/var/lib/shinken/libexec/check_ping -H 192.168.1.2 -w 100.0,90% -c 200.0,60%

Pretty simple, right? The beauty in this is that you can use a single command definition to check an unlimited number
of hosts. Each host can be checked with the same command definition because each host’s address is automatically
substituted in the command line before execution.

5.3.4 Example 2: Command Argument Macros

You can pass arguments to commands as well, which is quite handy if you’d like to keep your command definitions
rather generic. Arguments are specified in the object (i.e. host or service) definition, by separating them from the
command name with exclamation points (!) like so:

define service{
host_name linuxbox
service_description PING
check_command check_ping!200.0,80%!400.0,40%
...

}

In the example above, the service check command has two arguments (which can be referenced with $ARGn$ macros).
The $ARG1$ macro will be “200.0,80%” and “$ARG2$” will be “400.0,40%” (both without quotes). Assuming we
are using the host definition given earlier and a check_ping command defined like this:

define command{
command_name check_ping
command_line /var/lib/shinken/libexec/check_ping -H $HOSTADDRESS$ -w $ARG1$ -c $ARG2$

}

the expanded/final command line to be executed for the service’s check command would look like this:

/var/lib/shinken/libexec/check_ping -H 192.168.1.2 -w 200.0,40% -c 400.0,80%

If you need to pass bang (!) characters in your command arguments, you can do so by escaping them with a backslash
(). If you need to include backslashes in your command arguments, they should also be escaped with a backslash.

62 Chapter 5. The Basics

Shinken Documentation, Release 2.4

5.3.5 On-Demand Macros

Normally when you use host and service macros in command definitions, they refer to values for the host or service
for which the command is being run. For instance, if a host check command is being executed for a host named
“linuxbox”, all the standard host macros will refer to values for that host (“linuxbox”).

If you would like to reference values for another host or service in a command (for which the command is not being
run), you can use what are called “on-demand” macros. On-demand macros look like normal macros, except for the
fact that they contain an identifier for the host or service from which they should get their value. Here’s the basic
format for on-demand macros:

• “$HOSTMACRONAME:host_name$”

• “$SERVICEMACRONAME:host_name:service_description$”

Replace “HOSTMACRONAME” and “SERVICEMACRONAME” with the name of one of the standard host of ser-
vice macros found here.

Note that the macro name is separated from the host or service identifier by a colon (:). For on-demand service macros,
the service identifier consists of both a host name and a service description - these are separated by a colon (:) as well.

On-demand service macros can contain an empty host name field. In this case the name of the host associated with the
service will automatically be used.

Examples of on-demand host and service macros follow:

$HOSTDOWNTIME:myhost$ // On-demand host macro
$SERVICESTATEID:server:database$ // On-demand service macro
$SERVICESTATEID::CPU Load$ // On-demand service macro with blank host name field

On-demand macros are also available for hostgroup, servicegroup, contact, and contactgroup macros. For example:

$CONTACTEMAIL:john$ // On-demand contact macro
$CONTACTGROUPMEMBERS:linux-admins$ // On-demand contactgroup macro
$HOSTGROUPALIAS:linux-servers$ // On-demand hostgroup macro
$SERVICEGROUPALIAS:DNS-Cluster$ // On-demand servicegroup macro

5.3.6 On-Demand Group Macros

You can obtain the values of a macro across all contacts, hosts, or services in a specific group by using a special format
for your on-demand macro declaration. You do this by referencing a specific host group, service group, or contact
group name in an on-demand macro, like so:

• “$HOSTMACRONAME:hostgroup_name:delimiter$”

• “$SERVICEMACRONAME:servicegroup_name:delimiter$”

• “$CONTACTMACRONAME:contactgroup_name:delimiter$”

Replace “HOSTMACRONAME”, “SERVICEMACRONAME”, and “CONTACTMACRONAME” with the name of
one of the standard host, service, or contact macros found here. The delimiter you specify is used to separate macro
values for each group member.

For example, the following macro will return a comma-separated list of host state ids for hosts that are members of the
hg1 hostgroup:

"$HOSTSTATEID:hg1:,$"

This macro definition will return something that looks like this:

5.3. Understanding Macros and How They Work 63

Shinken Documentation, Release 2.4

5.3.7 Custom Variable Macros

Any custom object variables that you define in host, service, or contact definitions are also available as macros. Custom
variable macros are named as follows:

• “$_HOSTvarname$”

• “$_SERVICEvarname$”

• “$_CONTACTvarname$”

Take the following host definition with a custom variable called “”_MACADDRESS””...

define host{
host_name linuxbox
address 192.168.1.1
_MACADDRESS 00:01:02:03:04:05
...

}

The “_MACADDRESS” custom variable would be available in a macro called “$_HOSTMACADDRESS$”. More
information on custom object variables and how they can be used in macros can be found here.

5.3.8 Macro Cleansing

Some macros are stripped of potentially dangerous shell metacharacters before being substituted into commands to be
executed. Which characters are stripped from the macros depends on the setting of the illegal_macro_output_chars
directive. The following macros are stripped of potentially dangerous characters:

• $HOSTOUTPUT$

• $LONGHOSTOUTPUT$

• $HOSTPERFDATA$

• $HOSTACKAUTHOR$

• $HOSTACKCOMMENT$

• $SERVICEOUTPUT$

• $LONGSERVICEOUTPUT$

• $SERVICEPERFDATA$

• $SERVICEACKAUTHOR$

• $SERVICEACKCOMMENT$

5.3.9 Macros as Environment Variables

Most macros are made available as environment variables for easy reference by scripts or commands that are executed
by Shinken. For purposes of security and sanity, $USERn$ and “on-demand” host and service macros are not made
available as environment variables.

Environment variables that contain standard macros are named the same as their corresponding macro names (listed
here), with “NAGIOS_” prepended to their names. For example, the $HOSTNAME$ macro would be available as an
environment variable named “NAGIOS_HOSTNAME”.

64 Chapter 5. The Basics

Shinken Documentation, Release 2.4

5.3.10 Available Macros

A list of all the macros that are available in Shinken, as well as a chart of when they can be used, can be found here.

5.4 Standard Macros in Shinken

Standard macros that are available in Shinken are listed here. On-demand macros and macros for custom variables are
described here.

5.4.1 Macro Validity

Although macros can be used in all commands you define, not all macros may be valid” in a particular type of
command. For example, some macros may only be valid during service notification commands, whereas other may
only be valid during host check commands. There are ten types of commands that Nagios recognizes and treats
differently. They are as follows:

• Service checks

• Service notifications

• Host checks

• Host notifications

• Service event handlers and/or a global service event handler

• Host event handlers and/or a global host event handler

• OCSP command

• OCHP command

• Service performance data commands

• Host performance data commands

The tables below list all macros currently available in Shinken, along with a brief description of each and the types of
commands in which they are valid. If a macro is used in a command in which it is invalid, it is replaced with an empty
string. It should be noted that macros consist of all uppercase characters and are enclosed in $ characters.

5.4.2 Macro Availability Chart

Legend:

No The macro is not available
Yes The macro is available

Macro Name Service Checks Service Notifications Host Checks Host Notifications Service Event Handlers and OCSP Host Event Handlers and OCHP Service Perf Data Host Perf Data
Host Macros: 03
$HOSTNAME$ Yes Yes Yes Yes Yes Yes Yes Yes
$HOSTDISPLAYNAME$ Yes Yes Yes Yes Yes Yes Yes Yes
$HOSTALIAS$ Yes Yes Yes Yes Yes Yes Yes Yes
$HOSTADDRESS$ Yes Yes Yes Yes Yes Yes Yes Yes
$HOSTSTATE$ Yes Yes Yes 01 Yes Yes Yes Yes Yes
$HOSTSTATEID$ Yes Yes Yes 01 Yes Yes Yes Yes Yes

Continued on next page

5.4. Standard Macros in Shinken 65

Shinken Documentation, Release 2.4

Table 5.1 – continued from previous page
$LASTHOSTSTATE$ Yes Yes Yes Yes Yes Yes Yes Yes
$LASTHOSTSTATEID$ Yes Yes Yes Yes Yes Yes Yes Yes
$HOSTSTATETYPE$ Yes Yes Yes 01 Yes Yes Yes Yes Yes
$HOSTATTEMPT$ Yes Yes Yes Yes Yes Yes Yes Yes
$MAXHOSTATTEMPTS$ Yes Yes Yes Yes Yes Yes Yes Yes
$HOSTEVENTID$ Yes Yes Yes Yes Yes Yes Yes Yes
$LASTHOSTEVENTID$ Yes Yes Yes Yes Yes Yes Yes Yes
$HOSTPROBLEMID$ Yes Yes Yes Yes Yes Yes Yes Yes
$LASTHOSTPROBLEMID$ Yes Yes Yes Yes Yes Yes Yes Yes
$HOSTLATENCY$ Yes Yes Yes Yes Yes Yes Yes Yes
$HOSTEXECUTIONTIME$ Yes Yes Yes 01 Yes Yes Yes Yes Yes
$HOSTDURATION$ Yes Yes Yes Yes Yes Yes Yes Yes
$HOSTDURATIONSEC$ Yes Yes Yes Yes Yes Yes Yes Yes
$HOSTDOWNTIME$ Yes Yes Yes Yes Yes Yes Yes Yes
$HOSTPERCENTCHANGE$ Yes Yes Yes Yes Yes Yes Yes Yes
$HOSTGROUPNAME$ Yes Yes Yes Yes Yes Yes Yes Yes
$HOSTGROUPNAMES$ Yes Yes Yes Yes Yes Yes Yes Yes
$LASTHOSTCHECK$ Yes Yes Yes Yes Yes Yes Yes Yes
$LASTHOSTSTATECHANGE$ Yes Yes Yes Yes Yes Yes Yes Yes
$LASTHOSTUP$ Yes Yes Yes Yes Yes Yes Yes Yes
$LASTHOSTDOWN$ Yes Yes Yes Yes Yes Yes Yes Yes
$LASTHOSTUNREACHABLE$ Yes Yes Yes Yes Yes Yes Yes Yes
$HOSTOUTPUT$ Yes Yes Yes 01 Yes Yes Yes Yes Yes
$LONGHOSTOUTPUT$ Yes Yes Yes 01 Yes Yes Yes Yes Yes
$HOSTPERFDATA$ Yes Yes Yes 01 Yes Yes Yes Yes Yes
$HOSTCHECKCOMMAND$ Yes Yes Yes Yes Yes Yes Yes Yes
$HOSTACKAUTHOR$ 08 No No No Yes No No No No
$HOSTACKAUTHORNAME$ 08 No No No Yes No No No No
$HOSTACKAUTHORALIAS$ 08 No No No Yes No No No No
$HOSTACKCOMMENT$ 08 No No No Yes No No No No
$HOSTACTIONURL$ Yes Yes Yes Yes Yes Yes Yes Yes
$HOSTNOTESURL$ Yes Yes Yes Yes Yes Yes Yes Yes
$HOSTNOTES$ Yes Yes Yes Yes Yes Yes Yes Yes
$HOSTBUSINESSIMPACT$ Yes Yes Yes Yes Yes Yes Yes Yes
$TOTALHOSTSERVICES$ Yes Yes Yes Yes Yes Yes Yes Yes
$TOTALHOSTSERVICESOK$ Yes Yes Yes Yes Yes Yes Yes Yes
$TOTALHOSTSERVICESWARNING$ Yes Yes Yes Yes Yes Yes Yes Yes
$TOTALHOSTSERVICESUNKNOWN$ Yes Yes Yes Yes Yes Yes Yes Yes
$TOTALHOSTSERVICESCRITICAL$ Yes Yes Yes Yes Yes Yes Yes Yes
Macro Name Service Checks Service Notifications Host Checks Host Notifications Service Event Handlers and OCSP Host Event Handlers and OCHP Service Perf Data Host Perf Data
Host Group Macros:
$HOSTGROUPALIAS$ 05 Yes Yes Yes Yes Yes Yes Yes Yes
$HOSTGROUPMEMBERS$ 05 Yes Yes Yes Yes Yes Yes Yes Yes
$HOSTGROUPNOTES$ 05 Yes Yes Yes Yes Yes Yes Yes Yes
$HOSTGROUPNOTESURL$ 05 Yes Yes Yes Yes Yes Yes Yes Yes
$HOSTGROUPACTIONURL$ 05 Yes Yes Yes Yes Yes Yes Yes Yes
Macro Name Service Checks Service Notifications Host Checks Host Notifications Service Event Handlers and OCSP Host Event Handlers and OCHP Service Perf Data Host Perf Data
Service Macros:
$SERVICEDESC$ Yes Yes No No Yes No Yes No
$SERVICEDISPLAYNAME$ Yes Yes No No Yes No Yes No

Continued on next page

66 Chapter 5. The Basics

Shinken Documentation, Release 2.4

Table 5.1 – continued from previous page
$SERVICESTATE$ Yes 02 Yes No No Yes No Yes No
$SERVICESTATEID$ Yes 02 Yes No No Yes No Yes No
$LASTSERVICESTATE$ Yes Yes No No Yes No Yes No
$LASTSERVICESTATEID$ Yes Yes No No Yes No Yes No
$SERVICESTATETYPE$ Yes Yes No No Yes No Yes No
$SERVICEATTEMPT$ Yes Yes No No Yes No Yes No
$MAXSERVICEATTEMPTS$ Yes Yes No No Yes No Yes No
$SERVICEISVOLATILE$ Yes Yes No No Yes No Yes No
$SERVICEEVENTID$ Yes Yes No No Yes No Yes No
$LASTSERVICEEVENTID$ Yes Yes No No Yes No Yes No
$SERVICEPROBLEMID$ Yes Yes No No Yes No Yes No
$LASTSERVICEPROBLEMID$ Yes Yes No No Yes No Yes No
$SERVICELATENCY$ Yes Yes No No Yes No Yes No
$SERVICEEXECUTIONTIME$ Yes 02 Yes No No Yes No Yes No
$SERVICEDURATION$ Yes Yes No No Yes No Yes No
$SERVICEDURATIONSEC$ Yes Yes No No Yes No Yes No
$SERVICEDOWNTIME$ Yes Yes No No Yes No Yes No
$SERVICEPERCENTCHANGE$ Yes Yes No No Yes No Yes No
$SERVICEGROUPNAME$ Yes Yes No No Yes No Yes No
$SERVICEGROUPNAMES$ Yes Yes No No Yes No Yes No
$LASTSERVICECHECK$ Yes Yes No No Yes No Yes No
$LASTSERVICESTATECHANGE$ Yes Yes No No Yes No Yes No
$LASTSERVICEOK$ Yes Yes No No Yes No Yes No
$LASTSERVICEWARNING$ Yes Yes No No Yes No Yes No
$LASTSERVICEUNKNOWN$ Yes Yes No No Yes No Yes No
$LASTSERVICECRITICAL$ Yes Yes No No Yes No Yes No
$SERVICEOUTPUT$ Yes 02 Yes No No Yes No Yes No
$LONGSERVICEOUTPUT$ Yes 02 Yes No No Yes No Yes No
$SERVICEPERFDATA$ Yes 02 Yes No No Yes No Yes No
$SERVICECHECKCOMMAND$ Yes Yes No No Yes No Yes No
$SERVICEACKAUTHOR$ 08 No Yes No No No No No No
$SERVICEACKAUTHORNAME$ 08 No Yes No No No No No No
$SERVICEACKAUTHORALIAS$ 08 No Yes No No No No No No
$SERVICEACKCOMMENT$ 08 No Yes No No No No No No
$SERVICEACTIONURL$ Yes Yes No No Yes No Yes No
$SERVICENOTESURL$ Yes Yes No No Yes No Yes No
$SERVICENOTES$ Yes Yes No No Yes No Yes No
$SERVICEBUSINESSIMPACT$ Yes Yes No No Yes No Yes No
Macro Name Service Checks Service Notifications Host Checks Host Notifications Service Event Handlers and OCSP Host Event Handlers and OCHP Service Perf Data Host Perf Data
Service Group Macros:
$SERVICEGROUPALIAS$ 06 Yes Yes Yes Yes Yes Yes Yes Yes
$SERVICEGROUPMEMBERS$ 06 Yes Yes Yes Yes Yes Yes Yes Yes
$SERVICEGROUPNOTES$ 06 Yes Yes Yes Yes Yes Yes Yes Yes
$SERVICEGROUPNOTESURL$ 06 Yes Yes Yes Yes Yes Yes Yes Yes
$SERVICEGROUPACTIONURL$ 06 Yes Yes Yes Yes Yes Yes Yes Yes
Macro Name Service Checks Service Notifications Host Checks Host Notifications Service Event Handlers and OCSP Host Event Handlers and OCHP Service Perf Data Host Perf Data
Contact Macros:
$CONTACTNAME$ No Yes No Yes No No No No
$CONTACTALIAS$ No Yes No Yes No No No No
$CONTACTEMAIL$ No Yes No Yes No No No No

Continued on next page

5.4. Standard Macros in Shinken 67

Shinken Documentation, Release 2.4

Table 5.1 – continued from previous page
$CONTACTPAGER$ No Yes No Yes No No No No
$CONTACTADDRESSn$ No Yes No Yes No No No No
Macro Name Service Checks Service Notifications Host Checks Host Notifications Service Event Handlers and OCSP Host Event Handlers and OCHP Service Perf Data Host Perf Data
Contact Group Macros:
$CONTACTGROUPALIAS$ 07 Yes Yes Yes Yes Yes Yes Yes Yes
$CONTACTGROUPMEMBERS$ 07 Yes Yes Yes Yes Yes Yes Yes Yes
Macro Name Service Checks Service Notifications Host Checks Host Notifications Service Event Handlers and OCSP Host Event Handlers and OCHP Service Perf Data Host Perf Data
Summary Macros:
$TOTALHOSTSUP$ 10 Yes Yes 04 Yes Yes 04 Yes Yes Yes Yes
$TOTALHOSTSDOWN$ 10 Yes Yes 04 Yes Yes 04 Yes Yes Yes Yes
$TOTALHOSTSUNREACHABLE$ 10 Yes Yes 04 Yes Yes 04 Yes Yes Yes Yes
$TOTALHOSTSDOWNUNHANDLED$ 10 Yes Yes 04 Yes Yes 04 Yes Yes Yes Yes
$TOTALHOSTSUNREACHABLEUNHANDLED$ 10 Yes Yes 04 Yes Yes 04 Yes Yes Yes Yes
$TOTALHOSTPROBLEMS$ 10 Yes Yes 04 Yes Yes 04 Yes Yes Yes Yes
$TOTALHOSTPROBLEMSUNHANDLED$ 10 Yes Yes 04 Yes Yes 04 Yes Yes Yes Yes
$TOTALSERVICESOK$ 10 Yes Yes 04 Yes Yes 04 Yes Yes Yes Yes
$TOTALSERVICESWARNING$ 10 Yes Yes 04 Yes Yes 04 Yes Yes Yes Yes
$TOTALSERVICESCRITICAL$ 10 Yes Yes 04 Yes Yes 04 Yes Yes Yes Yes
$TOTALSERVICESUNKNOWN$ 10 Yes Yes 04 Yes Yes 04 Yes Yes Yes Yes
$TOTALSERVICESWARNINGUNHANDLED$ 10 Yes Yes 04 Yes Yes 04 Yes Yes Yes Yes
$TOTALSERVICESCRITICALUNHANDLED$ 10 Yes Yes 04 Yes Yes 04 Yes Yes Yes Yes
$TOTALSERVICESUNKNOWNUNHANDLED$ 10 Yes Yes 04 Yes Yes 04 Yes Yes Yes Yes
$TOTALSERVICEPROBLEMS$ 10 Yes Yes 04 Yes Yes 04 Yes Yes Yes Yes
$TOTALSERVICEPROBLEMSUNHANDLED$ 10 Yes Yes 04 Yes Yes 04 Yes Yes Yes Yes
Macro Name Service Checks Service Notifications Host Checks Host Notifications Service Event Handlers and OCSP Host Event Handlers and OCHP Service Perf Data Host Perf Data
Notification Macros:
$NOTIFICATIONTYPE$ No Yes No Yes No No No No
$NOTIFICATIONRECIPIENTS$ No Yes No Yes No No No No
$NOTIFICATIONISESCALATED$ No Yes No Yes No No No No
$NOTIFICATIONAUTHOR$ No Yes No Yes No No No No
$NOTIFICATIONAUTHORNAME$ No Yes No Yes No No No No
$NOTIFICATIONAUTHORALIAS$ No Yes No Yes No No No No
$NOTIFICATIONCOMMENT$ No Yes No Yes No No No No
$HOSTNOTIFICATIONNUMBER$ No Yes No Yes No No No No
$HOSTNOTIFICATIONID$ No Yes No Yes No No No No
$SERVICENOTIFICATIONNUMBER$ No Yes No Yes No No No No
$SERVICENOTIFICATIONID$ No Yes No Yes No No No No
Macro Name Service Checks Service Notifications Host Checks Host Notifications Service Event Handlers and OCSP Host Event Handlers and OCHP Service Perf Data Host Perf Data
Date/Time Macros:
$LONGDATETIME$ Yes Yes Yes Yes Yes Yes Yes Yes
$SHORTDATETIME$ Yes Yes Yes Yes Yes Yes Yes Yes
$DATE$ Yes Yes Yes Yes Yes Yes Yes Yes
$TIME$ Yes Yes Yes Yes Yes Yes Yes Yes
$TIMET$ Yes Yes Yes Yes Yes Yes Yes Yes
$ISVALIDTIME:$ Yes Yes Yes Yes Yes Yes Yes Yes
$NEXTVALIDTIME:$ Yes Yes Yes Yes Yes Yes Yes Yes
Macro Name Service Checks Service Notifications Host Checks Host Notifications Service Event Handlers and OCSP Host Event Handlers and OCHP Service Perf Data Host Perf Data
File Macros:
$MAINCONFIGFILE$ Yes Yes Yes Yes Yes Yes Yes Yes
$STATUSDATAFILE$ Yes Yes Yes Yes Yes Yes Yes Yes

Continued on next page

68 Chapter 5. The Basics

Shinken Documentation, Release 2.4

Table 5.1 – continued from previous page
$COMMENTDATAFILE$ Yes Yes Yes Yes Yes Yes Yes Yes 05
$DOWNTIMEDATAFILE$ Yes Yes Yes Yes Yes Yes Yes Yes
$RETENTIONDATAFILE$ Yes Yes Yes Yes Yes Yes Yes Yes
$OBJECTCACHEFILE$ Yes Yes Yes Yes Yes Yes Yes Yes
$TEMPFILE$ Yes Yes Yes Yes Yes Yes Yes Yes
$TEMPPATH$ Yes Yes Yes Yes Yes Yes Yes Yes
$LOGFILE$ Yes Yes Yes Yes Yes Yes Yes Yes
$RESOURCEFILE$ Yes Yes Yes Yes Yes Yes Yes Yes
$COMMANDFILE$ Yes Yes Yes Yes Yes Yes Yes Yes
$HOSTPERFDATAFILE$ Yes Yes Yes Yes Yes Yes Yes Yes
$SERVICEPERFDATAFILE$ Yes Yes Yes Yes Yes Yes Yes Yes
Macro Name Service Checks Service Notifications Host Checks Host Notifications Service Event Handlers and OCSP Host Event Handlers and OCHP Service Perf Data Host Perf Data
Misc Macros:
$PROCESSSTARTTIME$ Yes Yes Yes Yes Yes Yes Yes Yes
$EVENTSTARTTIME$ Yes Yes Yes Yes Yes Yes Yes Yes
$ADMINEMAIL$ Yes Yes Yes Yes Yes Yes Yes Yes
$ADMINPAGER$ Yes Yes Yes Yes Yes Yes Yes Yes
$ARGn$ Yes Yes Yes Yes Yes Yes Yes Yes
$USERn$ Yes Yes Yes Yes Yes Yes Yes Yes

5.4.3 Macro Descriptions

Host Macros 03

$HOSTNAME$ Short name for the host (i.e. “biglinuxbox”). This value is taken from the host_name directive in the host definition.
$HOSTDISPLAYNAME$ An alternate display name for the host. This value is taken from the display_name directive in the host definition.
$HOSTALIAS$ Long name/description for the host. This value is taken from the alias directive in the host definition.
$HOSTADDRESS$ Address of the host. This value is taken from the address directive in the host definition.
$HOSTSTATE$ A string indicating the current state of the host (“UP”, “DOWN”, or “UNREACHABLE”).
$HOSTSTATEID$ A number that corresponds to the current state of the host: 0=UP, 1=DOWN, 2=UNREACHABLE.
$LASTHOSTSTATE$ A string indicating the last state of the host (“UP”, “DOWN”, or “UNREACHABLE”).
$LASTHOSTSTATEID$ A number that corresponds to the last state of the host: 0=UP, 1=DOWN, 2=UNREACHABLE.
$HOSTSTATETYPE$ A string indicating the state type for the current host check (“HARD” or “SOFT”). Soft states occur when host checks return a non-OK (non-UP) state and are in the process of being retried. Hard states result when host checks have been checked a specified maximum number of times.
$HOSTATTEMPT$ The number of the current host check retry. For instance, if this is the second time that the host is being rechecked, this will be the number two. Current attempt number is really only useful when writing host event handlers for “soft” states that take a specific action based on the host retry number.
$MAXHOSTATTEMPTS$ The max check attempts as defined for the current host. Useful when writing host event handlers for “soft” states that take a specific action based on the host retry number.
$HOSTEVENTID$ A globally unique number associated with the host’s current state. Every time a host (or service) experiences a state change, a global event ID number is incremented by one (1). If a host has experienced no state changes, this macro will be set to zero (0).
$LASTHOSTEVENTID$ The previous (globally unique) event number that was given to the host.
$HOSTPROBLEMID$ A globally unique number associated with the host’s current problem state. Every time a host (or service) transitions from an UP or OK state to a problem state, a global problem ID number is incremented by one (1). This macro will be non-zero if the host is currently a non-UP state. State transitions between non-UP states (e.g. DOWN to UNREACHABLE) do not cause this problem id to increase. If the host is currently in an UP state, this macro will be set to zero (0). Combined with event handlers, this macro could be used to automatically open trouble tickets when hosts first enter a problem state.
$LASTHOSTPROBLEMID$ The previous (globally unique) problem number that was given to the host. Combined with event handlers, this macro could be used for automatically closing trouble tickets, etc. when a host recovers to an UP state.
$HOSTLATENCY$ A (floating point) number indicating the number of seconds that a scheduled host check lagged behind its scheduled check time. For instance, if a check was scheduled for 03:14:15 and it didn’t get executed until 03:14:17, there would be a check latency of 2.0 seconds. On-demand host checks have a latency of zero seconds.
$HOSTEXECUTIONTIME$ A (floating point) number indicating the number of seconds that the host check took to execute (i.e. the amount of time the check was executing).
$HOSTDURATION$ A string indicating the amount of time that the host has spent in its current state. Format is “XXh YYm ZZs”, indicating hours, minutes and seconds.
$HOSTDURATIONSEC$ A number indicating the number of seconds that the host has spent in its current state.
$HOSTDOWNTIME$ A number indicating the current “downtime depth” for the host. If this host is currently in a period of scheduled downtime, the value will be greater than zero. If the host is not currently in a period of downtime, this value will be zero.
$HOSTPERCENTCHANGE$ A (floating point) number indicating the percent state change the host has undergone. Percent state change is used by the flap detection algorithm.
$HOSTGROUPNAME$ The short name of the hostgroup that this host belongs to. This value is taken from the hostgroup_name directive in the hostgroup definition. If the host belongs to more than one hostgroup this macro will contain the name of just one of them.
$HOSTGROUPNAMES$ A comma separated list of the short names of all the hostgroups that this host belongs to.
$LASTHOSTCHECK$ This is a timestamp in time_t format (seconds since the UNIX epoch) indicating the time at which a check of the host was last performed.
$LASTHOSTSTATECHANGE$ This is a timestamp in time_t format (seconds since the UNIX epoch) indicating the time the host last changed state.

Continued on next page

5.4. Standard Macros in Shinken 69

Shinken Documentation, Release 2.4

Table 5.2 – continued from previous page
$LASTHOSTUP$ This is a timestamp in time_t format (seconds since the UNIX epoch) indicating the time at which the host was last detected as being in an UP state.
$LASTHOSTDOWN$ This is a timestamp in time_t format (seconds since the UNIX epoch) indicating the time at which the host was last detected as being in a DOWN state.
$LASTHOSTUNREACHABLE$ This is a timestamp in time_t format (seconds since the UNIX epoch) indicating the time at which the host was last detected as being in an UNREACHABLE state.
$HOSTOUTPUT$ The first line of text output from the last host check (i.e. “Ping OK”).
$LONGHOSTOUTPUT$ The full text output (aside from the first line) from the last host check.
$HOSTPERFDATA$ This macro contains any performance data that may have been returned by the last host check.
$HOSTCHECKCOMMAND$ This macro contains the name of the command (along with any arguments passed to it) used to perform the host check.
$HOSTACKAUTHOR$ 08 A string containing the name of the user who acknowledged the host problem. This macro is only valid in notifications where the $NOTIFICATIONTYPE$ macro is set to “ACKNOWLEDGEMENT”.
$HOSTACKAUTHORNAME$ 08 A string containing the short name of the contact (if applicable) who acknowledged the host problem. This macro is only valid in notifications where the $NOTIFICATIONTYPE$ macro is set to “ACKNOWLEDGEMENT”.
$HOSTACKAUTHORALIAS$ 08 A string containing the alias of the contact (if applicable) who acknowledged the host problem. This macro is only valid in notifications where the $NOTIFICATIONTYPE$ macro is set to “ACKNOWLEDGEMENT”.
$HOSTACKCOMMENT$ 08 A string containing the acknowledgement comment that was entered by the user who acknowledged the host problem. This macro is only valid in notifications where the $NOTIFICATIONTYPE$ macro is set to “ACKNOWLEDGEMENT”.
$HOSTACTIONURL$ Action URL for the host. This macro may contain other macros (e.g. $HOSTNAME$), which can be useful when you want to pass the host name to a web page.
$HOSTNOTESURL$ Notes URL for the host. This macro may contain other macros (e.g. $HOSTNAME$), which can be useful when you want to pass the host name to a web page.
$HOSTNOTES$ Notes for the host. This macro may contain other macros (e.g. $HOSTNAME$), which can be useful when you want to host-specific status information, etc. in the description.
$HOSTBUSINESSIMPACT$ A number indicating the business impact for the host.
$TOTALHOSTSERVICES$ The total number of services associated with the host.
$TOTALHOSTSERVICESOK$ The total number of services associated with the host that are in an OK state.
$TOTALHOSTSERVICESWARNING$ The total number of services associated with the host that are in a WARNING state.
$TOTALHOSTSERVICESUNKNOWN$ The total number of services associated with the host that are in an UNKNOWN state.
$TOTALHOSTSERVICESCRITICAL$ The total number of services associated with the host that are in a CRITICAL state.

Host Group Macros 05

$HOST-
GROUPALIAS$
05

The long name / alias of either 1) the hostgroup name passed as an on_demand macro
argument or 2) the primary hostgroup associated with the current host (if not used in the
context of an on_demand macro). This value is taken from the alias directive in the
hostgroup definition.

$HOSTGROUP-
MEMBERS$
05

A comma-separated list of all hosts that belong to either 1) the hostgroup name passed as an
on-demand macro argument or 2) the primary hostgroup associated with the current host (if
not used in the context of an on-demand macro).

$HOSTGROUP-
NOTES$
05

The notes associated with either 1) the hostgroup name passed as an on_demand macro
argument or 2) the primary hostgroup associated with the current host (if not used in the
context of an on_demand macro). This value is taken from the notes directive in the
hostgroup definition.

$HOSTGROUP-
NOTESURL$
05

The notes URL associated with either 1) the hostgroup name passed as an on_demand
macro argument or 2) the primary hostgroup associated with the current host (if not used in
the context of an on_demand macro). This value is taken from the notes_url directive in the
hostgroup definition.

$HOST-
GROUPACTIONURL$
05

The action URL associated with either 1) the hostgroup name passed as an on_demand
macro argument or 2) the primary hostgroup associated with the current host (if not used in
the context of an on_demand macro). This value is taken from the action_url directive in the
hostgroup definition.

Service Macros

$SERVICEDESC$ The long name/description of the service (i.e. “Main Website”). This value is taken from the description directive of the service definition.
$SERVICEDISPLAYNAME$ An alternate display name for the service. This value is taken from the display_name directive in the service definition.
$SERVICESTATE$ A string indicating the current state of the service (“OK”, “WARNING”, “UNKNOWN”, or “CRITICAL”).

Continued on next page

70 Chapter 5. The Basics

Shinken Documentation, Release 2.4

Table 5.3 – continued from previous page
$SERVICESTATEID$ A number that corresponds to the current state of the service: 0=OK, 1=WARNING, 2=CRITICAL, 3=UNKNOWN.
$LASTSERVICESTATE$ A string indicating the last state of the service (“OK”, “WARNING”, “UNKNOWN”, or “CRITICAL”).
$LASTSERVICESTATEID$ A number that corresponds to the last state of the service: 0=OK, 1=WARNING, 2=CRITICAL, 3=UNKNOWN.
$SERVICESTATETYPE$ A string indicating the state type for the current service check (“HARD” or “SOFT”). Soft states occur when service checks return a non-OK state and are in the process of being retried. Hard states result when service checks have been checked a specified maximum number of times.
$SERVICEATTEMPT$ The number of the current service check retry. For instance, if this is the second time that the service is being rechecked, this will be the number two. Current attempt number is really only useful when writing service event handlers for “soft” states that take a specific action based on the service retry number.
$MAXSERVICEATTEMPTS$ The max check attempts as defined for the current service. Useful when writing host event handlers for “soft” states that take a specific action based on the service retry number.
$SERVICEISVOLATILE$ Indicates whether the service is marked as being volatile or not: 0 = not volatile, 1 = volatile.
$SERVICEEVENTID$ A globally unique number associated with the service’s current state. Every time a a service (or host) experiences a state change, a global event ID number is incremented by one (1). If a service has experienced no state changes, this macro will be set to zero (0).
$LASTSERVICEEVENTID$ The previous (globally unique) event number that given to the service.
$SERVICEPROBLEMID$ A globally unique number associated with the service’s current problem state. Every time a service (or host) transitions from an OK or UP state to a problem state, a global problem ID number is incremented by one (1). This macro will be non-zero if the service is currently a non-OK state. State transitions between non-OK states (e.g. WARNING to CRITICAL) do not cause this problem id to increase. If the service is currently in an OK state, this macro will be set to zero (0). Combined with event handlers, this macro could be used to automatically open trouble tickets when services first enter a problem state.
$LASTSERVICEPROBLEMID$ The previous (globally unique) problem number that was given to the service. Combined with event handlers, this macro could be used for automatically closing trouble tickets, etc. when a service recovers to an OK state.
$SERVICELATENCY$ A (floating point) number indicating the number of seconds that a scheduled service check lagged behind its scheduled check time. For instance, if a check was scheduled for 03:14:15 and it didn’t get executed until 03:14:17, there would be a check latency of 2.0 seconds.
$SERVICEEXECUTIONTIME$ A (floating point) number indicating the number of seconds that the service check took to execute (i.e. the amount of time the check was executing).
$SERVICEDURATION$ A string indicating the amount of time that the service has spent in its current state. Format is “XXh YYm ZZs”, indicating hours, minutes and seconds.
$SERVICEDURATIONSEC$ A number indicating the number of seconds that the service has spent in its current state.
$SERVICEDOWNTIME$ A number indicating the current “downtime depth” for the service. If this service is currently in a period of scheduled downtime, the value will be greater than zero. If the service is not currently in a period of downtime, this value will be zero.
$SERVICEPERCENTCHANGE$ A (floating point) number indicating the percent state change the service has undergone. Percent state change is used by the flap detection algorithm.
$SERVICEGROUPNAME$ The short name of the servicegroup that this service belongs to. This value is taken from the servicegroup_name directive in the servicegroup definition. If the service belongs to more than one servicegroup this macro will contain the name of just one of them.
$SERVICEGROUPNAMES$ A comma separated list of the short names of all the servicegroups that this service belongs to.
$LASTSERVICECHECK$ This is a timestamp in time_t format (seconds since the UNIX epoch) indicating the time at which a check of the service was last performed.
$LASTSERVICESTATECHANGE$ This is a timestamp in time_t format (seconds since the UNIX epoch) indicating the time the service last changed state.
$LASTSERVICEOK$ This is a timestamp in time_t format (seconds since the UNIX epoch) indicating the time at which the service was last detected as being in an OK state.
$LASTSERVICEWARNING$ This is a timestamp in time_t format (seconds since the UNIX epoch) indicating the time at which the service was last detected as being in a WARNING state.
$LASTSERVICEUNKNOWN$ This is a timestamp in time_t format (seconds since the UNIX epoch) indicating the time at which the service was last detected as being in an UNKNOWN state.
$LASTSERVICECRITICAL$ This is a timestamp in time_t format (seconds since the UNIX epoch) indicating the time at which the service was last detected as being in a CRITICAL state.
$SERVICEOUTPUT$ The first line of text output from the last service check (i.e. “Ping OK”).
$LONGSERVICEOUTPUT$ The full text output (aside from the first line) from the last service check.
$SERVICEPERFDATA$ This macro contains any performance data that may have been returned by the last service check.
$SERVICECHECKCOMMAND$ This macro contains the name of the command (along with any arguments passed to it) used to perform the service check.
$SERVICEACKAUTHOR$ 08 A string containing the name of the user who acknowledged the service problem. This macro is only valid in notifications where the $NOTIFICATIONTYPE$ macro is set to “ACKNOWLEDGEMENT”.
$SERVICEACKAUTHORNAME$ 08 A string containing the short name of the contact (if applicable) who acknowledged the service problem. This macro is only valid in notifications where the $NOTIFICATIONTYPE$ macro is set to “ACKNOWLEDGEMENT”.
$SERVICEACKAUTHORALIAS$ 08 A string containing the alias of the contact (if applicable) who acknowledged the service problem. This macro is only valid in notifications where the $NOTIFICATIONTYPE$ macro is set to “ACKNOWLEDGEMENT”.
$SERVICEACKCOMMENT$ 08 A string containing the acknowledgement comment that was entered by the user who acknowledged the service problem. This macro is only valid in notifications where the $NOTIFICATIONTYPE$ macro is set to “ACKNOWLEDGEMENT”.
$SERVICEACTIONURL$ Action URL for the service. This macro may contain other macros (e.g. $HOSTNAME$ or $SERVICEDESC$), which can be useful when you want to pass the service name to a web page.
$SERVICENOTESURL$ Notes URL for the service. This macro may contain other macros (e.g. $HOSTNAME$ or $SERVICEDESC$), which can be useful when you want to pass the service name to a web page.
$SERVICENOTES$ Notes for the service. This macro may contain other macros (e.g. $HOSTNAME$ or $SERVICESTATE$), which can be useful when you want to service-specific status information, etc. in the description
$SERVICEBUSINESSIMPACT$ A number indicating the business impact for the service.

5.4. Standard Macros in Shinken 71

Shinken Documentation, Release 2.4

Service Group Macros 06

$SERVICE-
GROUPALIAS$
06

The long name / alias of either 1) the servicegroup name passed as an on_demand macro
argument or 2) the primary servicegroup associated with the current service (if not used in
the context of an on_demand macro). This value is taken from the alias directive in the
servicegroup definition.

$SERVICE-
GROUPMEM-
BERS$
06

A comma-separated list of all services that belong to either 1) the servicegroup name
passed as an on-demand macro argument or 2) the primary servicegroup associated with
the current service (if not used in the context of an on-demand macro).

$SERVICE-
GROUPNOTES$
06

The notes associated with either 1) the servicegroup name passed as an on_demand macro
argument or 2) the primary servicegroup associated with the current service (if not used in
the context of an on_demand macro). This value is taken from the notes directive in the
servicegroup definition.

$SERVICE-
GROUP-
NOTESURL$
06

The notes URL associated with either 1) the servicegroup name passed as an on_demand
macro argument or 2) the primary servicegroup associated with the current service (if not
used in the context of an on_demand macro). This value is taken from the notes_url
directive in the servicegroup definition.

$SERVICE-
GROUPACTIONURL$
06

The action URL associated with either 1) the servicegroup name passed as an on_demand
macro argument or 2) the primary servicegroup associated with the current service (if not
used in the context of an on_demand macro). This value is taken from the action_url
directive in the servicegroup definition.

Contact Macros

$CONTACT-
NAME$

Short name for the contact (i.e. “jdoe”) that is being notified of a host or service problem.
This value is taken from the contact_name directive in the contact definition.

$CONTACTAL-
IAS$

Long name/description for the contact (i.e. “John Doe”) being notified. This value is taken
from the alias directive in the contact definition.

$CON-
TACTEMAIL$

Email address of the contact being notified. This value is taken from the email directive in the
contact definition.

$CONTACT-
PAGER$

Pager number/address of the contact being notified. This value is taken from the pager
directive in the contact definition.

$CONTACTAD-
DRESSn$

Address of the contact being notified. Each contact can have six different addresses (in
addition to email address and pager number). The macros for these addresses are
$CONTACTADDRESS1$ - $CONTACTADDRESS6$. This value is taken from the addressx
directive in the contact definition.

$CONTACT-
GROUPNAME$

The short name of the contactgroup that this contact is a member of. This value is taken from
the contactgroup_name directive in the contactgroup definition. If the contact belongs to
more than one contactgroup this macro will contain the name of just one of them.

$CONTACT-
GROUP-
NAMES$

A comma separated list of the short names of all the contactgroups that this contact is a
member of.

72 Chapter 5. The Basics

Shinken Documentation, Release 2.4

Contact Group Macros 05

$CONTACT-
GROUPALIAS$
07

The long name / alias of either 1) the contactgroup name passed as an on_demand macro
argument or 2) the primary contactgroup associated with the current contact (if not used in
the context of an on_demand macro). This value is taken from the alias directive in the
contactgroup definition.

$CONTACT-
GROUPMEM-
BERS$
07

A comma-separated list of all contacts that belong to either 1) the contactgroup name
passed as an on-demand macro argument or 2) the primary contactgroup associated with
the current contact (if not used in the context of an on-demand macro).

5.4. Standard Macros in Shinken 73

Shinken Documentation, Release 2.4

Summary Macros

$TOTALHOSTSUP$
This macro reflects the total number of hosts that are currently in an UP state.

$TOTALHOSTSDOWN$
This macro reflects the total number of hosts that are currently in a DOWN state.

$TOTALHOSTSUN-
REACHABLE$

This macro reflects the total number of hosts that are currently in an
UNREACHABLE state.

$TOTALHOSTSDOW-
NUNHANDLED$

This macro reflects the total number of hosts that are currently in a DOWN state that
are not currently being “handled”. Unhandled host problems are those that are not
acknowledged, are not currently in scheduled downtime, and for which checks are
currently enabled.

$TOTALHOSTSUN-
REACHABLEUNHAN-
DLED$

This macro reflects the total number of hosts that are currently in an
UNREACHABLE state that are not currently being “handled”. Unhandled host
problems are those that are not acknowledged, are not currently in scheduled
downtime, and for which checks are currently enabled.

$TOTALHOSTPROB-
LEMS$

This macro reflects the total number of hosts that are currently either in a DOWN or
an UNREACHABLE state.

$TOTALHOSTPROB-
LEMSUNHANDLED$

This macro reflects the total number of hosts that are currently either in a DOWN or
an UNREACHABLE state that are not currently being “handled”. Unhandled host
problems are those that are not acknowledged, are not currently in scheduled
downtime, and for which checks are currently enabled.

$TOTALSERVICESOK$
This macro reflects the total number of services that are currently in an OK state.

$TOTALSER-
VICESWARNING$

This macro reflects the total number of services that are currently in a WARNING
state.

$TOTALSERVICES-
CRITICAL$

This macro reflects the total number of services that are currently in a CRITICAL
state.

$TOTALSERVICESUN-
KNOWN$

This macro reflects the total number of services that are currently in an UNKNOWN
state.

$TOTALSER-
VICESWARNINGUN-
HANDLED$

This macro reflects the total number of services that are currently in a WARNING
state that are not currently being “handled”. Unhandled services problems are those
that are not acknowledged, are not currently in scheduled downtime, and for which
checks are currently enabled.

$TOTALSERVICES-
CRITICALUNHAN-
DLED$

This macro reflects the total number of services that are currently in a CRITICAL
state that are not currently being “handled”. Unhandled services problems are those
that are not acknowledged, are not currently in scheduled downtime, and for which
checks are currently enabled.

$TOTALSERVICESUN-
KNOWNUNHAN-
DLED$

This macro reflects the total number of services that are currently in an UNKNOWN
state that are not currently being “handled”. Unhandled services problems are those
that are not acknowledged, are not currently in scheduled downtime, and for which
checks are currently enabled.

$TOTALSERVI-
CEPROBLEMS$

This macro reflects the total number of services that are currently either in a
WARNING, CRITICAL, or UNKNOWN state.

$TOTALSERVI-
CEPROBLEMSUNHAN-
DLED$

This macro reflects the total number of services that are currently either in a
WARNING, CRITICAL, or UNKNOWN state that are not currently being
“handled”. Unhandled services problems are those that are not acknowledged, are
not currently in scheduled downtime, and for which checks are currently enabled.

74 Chapter 5. The Basics

Shinken Documentation, Release 2.4

5.4. Standard Macros in Shinken 75

Shinken Documentation, Release 2.4

Notification Macros

$NOTIFICATION-
TYPE$

A string identifying the type of notification that is being sent (“PROBLEM”,
“RECOVERY”, “ACKNOWLEDGEMENT”, “FLAPPINGSTART”,
“FLAPPINGSTOP”, “FLAPPINGDISABLED”, “DOWNTIMESTART”,
“DOWNTIMEEND”, or “DOWNTIMECANCELLED”).

$NOTIFICATION-
RECIPIENTS$

A comma-separated list of the short names of all contacts that are being notified about the
host or service.

$NOTIFICA-
TIONISESCA-
LATED$

An integer indicating whether this was sent to normal contacts for the host or service or if
it was escalated. 0 = Normal (non-escalated) notification , 1 = Escalated notification.

$NOTIFICATIO-
NAUTHOR$

A string containing the name of the user who authored the notification. If the
$NOTIFICATIONTYPE$ macro is set to “DOWNTIMESTART” or
“DOWNTIMEEND”, this will be the name of the user who scheduled downtime for the
host or service. If the $NOTIFICATIONTYPE$ macro is “ACKNOWLEDGEMENT”,
this will be the name of the user who acknowledged the host or service problem. If the
$NOTIFICATIONTYPE$ macro is “CUSTOM”, this will be name of the user who
initated the custom host or service notification.

$NOTIFICATIO-
NAUTHORNAME$

A string containing the short name of the contact (if applicable) specified in the
$NOTIFICATIONAUTHOR$ macro.

$NOTIFICATIO-
NAUTHORALIAS$

A string containing the alias of the contact (if applicable) specified in the
$NOTIFICATIONAUTHOR$ macro.

$NOTIFICATION-
COMMENT$

A string containing the comment that was entered by the notification author. If the
$NOTIFICATIONTYPE$ macro is set to “DOWNTIMESTART” or
“DOWNTIMEEND”, this will be the comment entered by the user who scheduled
downtime for the host or service. If the $NOTIFICATIONTYPE$ macro is
“ACKNOWLEDGEMENT”, this will be the comment entered by the user who
acknowledged the host or service problem. If the $NOTIFICATIONTYPE$ macro is
“CUSTOM”, this will be comment entered by the user who initated the custom host or
service notification.

$HOSTNOTIFICA-
TIONNUMBER$

The current notification number for the host. The notification number increases by one
(1) each time a new notification is sent out for the host (except for acknowledgements).
The notification number is reset to 0 when the host recovers (after the recovery
notification has gone out). Acknowledgements do not cause the notification number to
increase, nor do notifications dealing with flap detection or scheduled downtime.

$HOSTNOTIFICA-
TIONID$

A unique number identifying a host notification. Notification ID numbers are unique
across both hosts and service notifications, so you could potentially use this unique
number as a primary key in a notification database. Notification ID numbers should
remain unique across restarts of the Nagios process, so long as you have state retention
enabled. The notification ID number is incremented by one (1) each time a new host
notification is sent out, and regardless of how many contacts are notified.

$SERVICENOTIFI-
CATIONNUMBER$

The current notification number for the service. The notification number increases by one
(1) each time a new notification is sent out for the service (except for acknowledgements).
The notification number is reset to 0 when the service recovers (after the recovery
notification has gone out). Acknowledgements do not cause the notification number to
increase, nor do notifications dealing with flap detection or scheduled downtime.

$SERVICENOTIFI-
CATIONID$

A unique number identifying a service notification. Notification ID numbers are unique
across both hosts and service notifications, so you could potentially use this unique
number as a primary key in a notification database. Notification ID numbers should
remain unique across restarts of the Nagios process, so long as you have state retention
enabled. The notification ID number is incremented by one (1) each time a new service
notification is sent out, and regardless of how many contacts are notified.

76 Chapter 5. The Basics

Shinken Documentation, Release 2.4

Date/Time Macros

$LONG-
DATETIME$

Current date/time stamp (i.e. Fri Oct 13 00:30:28 CDT 2000). Format of date is determined by
date_format directive.

$SHORT-
DATETIME$

Current date/time stamp (i.e. 10-13-2000 00:30:28). Format of date is determined by
date_format directive.

$DATE$
Date stamp (i.e. 10-13-2000). Format of date is determined by date_format directive.

$TIME$
Current time stamp (i.e. 00:30:28).

$TIMET$
Current time stamp in time_t format (seconds since the UNIX epoch).

$ISVALID-
TIME$
09

This is a special on_demand macro that returns a 1 or 0 depending on whether or not a particular
time is valid within a specified timeperiod. There are two ways of using this macro: _
$ISVALIDTIME:24x7$ will be set to “1” if the current time is valid within the “24x7”
timeperiod. If not, it will be set to “0”. _ $ISVALIDTIME:24x7:timestamp$ will be set to “1” if
the time specified by the “timestamp” argument (which must be in time_t format) is valid within
the “24x7” timeperiod. If not, it will be set to “0”.

$NEXTVALID-
TIME$
09

This is a special on_demand macro that returns the next valid time (in time_t format) for a
specified timeperiod. There are two ways of using this macro: _ $NEXTVALIDTIME:24x7$
will return the next valid time _ from and including the current time _ in the “24x7” timeperiod.
_ $NEXTVALIDTIME:24x7:timestamp$ will return the next valid time - from and including the
time specified by the “timestamp” argument (which must be specified in time_t format) - in the
“24x7” timeperiod.If a next valid time cannot be found in the specified timeperiod, the macro
will be set to “0”.

File Macros

$MAINCONFIGFILE$
The location of the main config file.

$STATUSDATAFILE$
The location of the status data file.

$COMMENTDATAFILE$
The location of the comment data file.

$DOWNTIMEDATAFILE$
The location of the downtime data file.

$RETENTIONDATAFILE$
The location of the retention data file.

$OBJECTCACHEFILE$
The location of the object cache file.

$TEMPFILE$
The location of the temp file.

$TEMPPATH$
The directory specified by the temp path variable.

$LOGFILE$
The location of the log file.

$RESOURCEFILE$
The location of the resource file.

$COMMANDFILE$
The location of the command file.

$HOSTPERFDATAFILE$
The location of the host performance data file (if defined).

$SERVICEPERFDATAFILE$
The location of the service performance data file (if defined).

5.4. Standard Macros in Shinken 77

Shinken Documentation, Release 2.4

Misc Macros

$PRO-
CESSSTART-
TIME$

Time stamp in time_t format (seconds since the UNIX epoch) indicating when the Nagios
process was last (re)started. You can determine the number of seconds that Nagios has been
running (since it was last restarted) by subtracting $PROCESSSTARTTIME$ from $TIMET$.

$EVENTSTART-
TIME$

Time stamp in time_t format (seconds since the UNIX epoch) indicating when the Nagios
process starting process events (checks, etc.). You can determine the number of seconds that it
took for Nagios to startup by subtracting $PROCESSSTARTTIME$ from
$EVENTSTARTTIME$.

$ADMINE-
MAIL$
(unused)

Global administrative email address. This value is taken from the admin_email directive.

$ADMIN-
PAGER$
(unused)

Global administrative pager number/address. This value is taken from the admin_pager
directive.

$ARGn$
The nth argument passed to the command (notification, event handler, service check, etc.).
Nagios supports up to 32 argument macros ($ARG1$ through $ARG32$).

$USERn$
The nth user-definable macro. User macros can be defined in one or more resource files.
Nagios supports up to 32 user macros ($USER1$ through $USER32$).

5.4.4 Notes

• 01 These macros are not valid for the host they are associated with when that host is being checked (i.e. they
make no sense, as they haven’t been determined yet).

• 02 These macros are not valid for the service they are associated with when that service is being checked (i.e.
they make no sense, as they haven’t been determined yet).

• 03 When host macros are used in service-related commands (i.e. service notifications, event handlers, etc) they
refer to the host that the service is associated with.

• 04 When host and service summary macros are used in notification commands, the totals are filtered to reflect
only those hosts and services for which the contact is authorized (i.e. hosts and services they are configured to
receive notifications for).

• 05 These macros are normally associated with the first/primary hostgroup associated with the current host. They
could therefore be considered host macros in many cases. However, these macros are not available as on-demand
host macros. Instead, they can be used as on-demand hostgroup macros when you pass the name of a hostgroup
to the macro. For example: $HOSTGROUPMEMBERS:hg1$ would return a comma-delimited list of all (host)
members of the hostgroup hg1.

• 06 These macros are normally associated with the first/primary servicegroup associated with the current service.
They could therefore be considered service macros in many cases. However, these macros are not available
as on-demand service macros. Instead, they can be used as on-demand servicegroup macros when you pass
the name of a servicegroup to the macro. For example: $SERVICEGROUPMEMBERS:sg1$ would return a
comma-delimited list of all (service) members of the servicegroup sg1.

• 07 These macros are normally associated with the first/primary contactgroup associated with the current contact.
They could therefore be considered contact macros in many cases. However, these macros are not available as
on-demand contact macros. Instead, they can be used as on-demand contactgroup macros when you pass the
name of a contactgroup to the macro. For example: $CONTACTGROUPMEMBERS:cg1$ would return a
comma-delimited list of all (contact) members of the contactgroup cg1.

78 Chapter 5. The Basics

Shinken Documentation, Release 2.4

• 08 These acknowledgement macros are deprecated. Use the more generic $NOTIFICATIONAUTHOR$, $NO-
TIFICATIONAUTHORNAME$, $NOTIFICATIONAUTHORALIAS$ or $NOTIFICATIONAUTHORCOM-
MENT$ macros instead.

• 09 These macro are only available as on-demand macros - e.g. you must supply an additional argument with
them in order to use them. These macros are not available as environment variables.

• 10 Summary macros are not available as environment variables if the use_large_installation_tweaks option is
enabled, as they are quite CPU-intensive to calculate.

5.5 Host Checks

5.5.1 Introduction

The basic workings of host checks are described here...

5.5.2 When Are Host Checks Performed?

Hosts are checked by the Shinken daemon:

• At regular intervals, as defined by the check_interval and retry_interval options in your host definitions.

• On-demand when a service associated with the host changes state.

• On-demand as needed as part of the host reachability logic.

• On-demand as needed for predictive host dependency checks.

Regularly scheduled host checks are optional. If you set the check_interval option in your host definition to zero (0),
Shinken will not perform checks of the hosts on a regular basis. It will, however, still perform on-demand checks of
the host as needed for other parts of the monitoring logic.

On-demand checks are made when a service associated with the host changes state because Shinken needs to know
whether the host has also changed state. Services that change state are often an indicator that the host may have also
changed state. For example, if Shinken detects that the “HTTP” service associated with a host just changed from a
CRITICAL to an OK state, it may indicate that the host just recovered from a reboot and is now back up and running.

On-demand checks of hosts are also made as part of the host reachability logic. Shinken is designed to detect network
outages as quickly as possible, and distinguish between DOWN and UNREACHABLE host states. These are very
different states and can help an admin quickly locate the cause of a network outage.

On-demand checks are also performed as part of the predictive host dependency check logic. These checks help ensure
that the dependency logic is as accurate as possible.

5.5.3 Cached Host Checks

The performance of on-demand host checks can be significantly improved by implementing the use of cached checks,
which allow Shinken to forgo executing a host check if it determines a relatively recent check result will do instead.
More information on cached checks can be found here.

5.5.4 Dependencies and Checks

You can define host execution dependencies that prevent Shinken from checking the status of a host depending on the
state of one or more other hosts. More information on dependencies can be found here.

5.5. Host Checks 79

Shinken Documentation, Release 2.4

5.5.5 Parallelization of Host Checks

All checks are run in parallel.

5.5.6 Host States

Hosts that are checked can be in one of three different states:

• UP

• DOWN

• UNREACHABLE

5.5.7 Host State Determination

Host checks are performed by plugins, which can return a state of OK, WARNING, UNKNOWN, or CRITICAL. How
does Shinken translate these plugin return codes into host states of UP, DOWN, or UNREACHABLE? Lets see...

The table below shows how plugin return codes correspond with preliminary host states. Some post-processing (which
is described later) is done which may then alter the final host state.

Plugin Result Preliminary Host State
OK UP
WARNING DOWN*
UNKNOWN DOWN
CRITICAL DOWN

If the preliminary host state is DOWN, Shinken will attempt to see if the host is really DOWN or if it is UNREACH-
ABLE. The distinction between DOWN and UNREACHABLE host states is important, as it allows admins to deter-
mine root cause of network outages faster. The following table shows how Shinken makes a final state determination
based on the state of the hosts parent(s). A host’s parents are defined in the parents directive in host definition.

Preliminary Host State Parent Host State Final Host State
DOWN At least one parent is UP DOWN
DOWN All parents are either DOWN or UNREACHABLE UNREACHABLE

More information on how Shinken distinguishes between DOWN and UNREACHABLE states can be found here.

5.5.8 Host State Changes

As you are probably well aware, hosts don’t always stay in one state. Things break, patches get applied, and servers
need to be rebooted. When Shinken checks the status of hosts, it will be able to detect when a host changes between
UP, DOWN, and UNREACHABLE states and take appropriate action. These state changes result in different state
types (HARD or SOFT), which can trigger event handlers to be run and notifications to be sent out. Detecting and
dealing with state changes is what Shinken is all about.

When hosts change state too frequently they are considered to be “flapping”. A good example of a flapping host would
be server that keeps spontaneously rebooting as soon as the operating system loads. That’s always a fun scenario to
have to deal with. Shinken can detect when hosts start flapping, and can suppress notifications until flapping stops and
the host’s state stabilizes. More information on the flap detection logic can be found here.

80 Chapter 5. The Basics

Shinken Documentation, Release 2.4

5.6 Service Checks

5.6.1 Introduction

The basic workings of service checks are described here...

5.6.2 When Are Service Checks Performed?

Services are checked by the Shinken daemon:

• At regular intervals, as defined by the “check_interval” and “retry_interval” options in your service definitions.

• On-demand as needed for predictive service dependency checks.

On-demand checks are performed as part of the predictive service dependency check logic. These checks help ensure
that the dependency logic is as accurate as possible. If you don’t make use of service dependencies, Shinken won’t
perform any on-demand service checks.

5.6.3 Cached Service Checks

The performance of on-demand service checks can be significantly improved by implementing the use of cached
checks, which allow Shinken to forgo executing a service check if it determines a relatively recent check result will
do instead. Cached checks will only provide a performance increase if you are making use of service dependencies.
More information on cached checks can be found here.

5.6.4 Dependencies and Checks

You can define service execution dependencies that prevent Shinken from checking the status of a service depending
on the state of one or more other services. More information on dependencies can be found here.

5.6.5 Parallelization of Service Checks

Scheduled service checks are run in parallel.

5.6.6 Service States

Services that are checked can be in one of four different states:

• OK

• WARNING

• UNKNOWN

• CRITICAL

5.6.7 Service State Determination

Service checks are performed by plugins, which can return a state of OK, WARNING, UNKNOWN, or CRITICAL.
These plugin states directly translate to service states. For example, a plugin which returns a WARNING state will
cause a service to have a WARNING state.

5.6. Service Checks 81

Shinken Documentation, Release 2.4

5.6.8 Services State Changes

When Shinken checks the status of services, it will be able to detect when a service changes between OK, WARNING,
UNKNOWN, and CRITICAL states and take appropriate action. These state changes result in different state types
(HARD or SOFT), which can trigger event handlers to be run and notifications to be sent out. Service state changes
can also trigger on-demand host checks. Detecting and dealing with state changes is what Shinken is all about.

When services change state too frequently they are considered to be “flapping”. Shinken can detect when services
start flapping, and can suppress notifications until flapping stops and the service’s state stabilizes. More information
on the flap detection logic can be found here.

5.7 Active Checks

5.7.1 Introduction

Shinken is capable of monitoring hosts and services in two ways: actively and passively. Passive checks are described
elsewhere, so we’ll focus on active checks here. Active checks are the most common method for monitoring hosts and
services. The main features of actives checks are as follows:

• Active checks are initiated by the Shinken process

• Active checks are run on a regularly scheduled basis

5.7.2 How Are Active Checks Performed?

Active checks are initiated by the check logic in the Shinken daemon. When Shinken needs to check the status of a
host or service it will execute a plugin and pass it information about what needs to be checked. The plugin will then
check the operational state of the host or service and report the results back to the Shinken daemon. Shinken will
process the results of the host or service check and take appropriate action as necessary (e.g. send notifications, run
event handlers, etc).

82 Chapter 5. The Basics

Shinken Documentation, Release 2.4

More information on how plugins work can be found here.

5.7.3 When Are Active Checks Executed?

Active check are executed:

• At regular intervals, as defined by the “check_interval” and “retry_interval” options in your host and service
definitions

• On-demand as needed

Regularly scheduled checks occur at intervals equaling either the “check_interval” or the “retry_interval” in your host
or service definitions, depending on what type of state the host or service is in. If a host or service is in a HARD state,
it will be actively checked at intervals equal to the “check_interval” option. If it is in a SOFT state, it will be checked
at intervals equal to the retry_interval option.

On-demand checks are performed whenever Shinken sees a need to obtain the latest status information about a par-
ticular host or service. For example, when Shinken is determining the reachability of a host, it will often perform
on-demand checks of parent and child hosts to accurately determine the status of a particular network segment. On-
demand checks also occur in the predictive dependency check logic in order to ensure Shinken has the most accurate
status information.

5.8 Passive Checks

5.8.1 Introduction

In most cases you’ll use Shinken to monitor your hosts and services using regularly scheduled active checks. Active
checks can be used to “poll” a device or service for status information every so often. Shinken also supports a way to
monitor hosts and services passively instead of actively. They key features of passive checks are as follows:

• Passive checks are initiated and performed by external applications/processes

• Passive check results are submitted to Shinken for processing

The major difference between active and passive checks is that active checks are initiated and performed by Shinken,
while passive checks are performed by external applications.

5.8.2 Uses For Passive Checks

Passive checks are useful for monitoring services that are:

• Asynchronous in nature, they cannot or would not be monitored effectively by polling their status on a regularly
scheduled basis

• Located behind a firewall and cannot be checked actively from the monitoring host

Examples of asynchronous services that lend themselves to being monitored passively include:

• “SNMP” traps and security alerts. You never know how many (if any) traps or alerts you’ll receive in a given
time frame, so it’s not feasible to just monitor their status every few minutes.

• Aggregated checks from a host running an agent. Checks may be run at much lower intervals on hosts running
an agent.

• Submitting check results that happen directly within an application without using an intermediate log file(syslog,
event log, etc.).

5.8. Passive Checks 83

Shinken Documentation, Release 2.4

Passive checks are also used when configuring distributed or redundant monitoring installations.

5.8.3 How Passive Checks Work

DEPRECATED IMAGE - TODO REPLACE WITH MOE ACCURATE DEPTICTION

Here’s how passive checks work in more detail...

• An external application checks the status of a host or service.

• The external application writes the results of the check to the external command named pipe (a named pipe is a
“memory pipe”, so there is no disk IO involved).

• Shinken reads the external command file and places the results of all passive checks into a queue for processing
by the appropriate process in the Shinken cloud.

• Shinken will execute a check result reaper event each second and scan the check result queue. Each service
check result that is found in the queue is processed in the same manner - regardless of whether the check was
active or passive. Shinken may send out notifications, log alerts, etc. depending on the check result information.

The processing of active and passive check results is essentially identical. This allows for seamless integration of
status information from external applications with Shinken.

5.8.4 Enabling Passive Checks

In order to enable passive checks in Shinken, you’ll need to do the following:

• Set “accept_passive_service_checks” directive is set to 1 (in nagios.cfg).

• Set the “passive_checks_enabled” directive in your host and service definitions is set to 1.

If you want to disable processing of passive checks on a global basis, set the “accept_passive_service_checks” direc-
tive to 0.

84 Chapter 5. The Basics

Shinken Documentation, Release 2.4

If you would like to disable passive checks for just a few hosts or services, use the “passive_checks_enabled” directive
in the host and/or service definitions to do so.

5.8.5 Submitting Passive Service Check Results

External applications can submit passive service check results to Shinken by writing a PRO-
CESS_SERVICE_CHECK_RESULT external command to the external command pipe, which is essentially a
file handle that you write to as you would a file.

The format of the command is as follows: “[<timestamp>] PROCESS_SERVICE_CHECK_RESULT;<configobjects/host_name>;<svc_description>;<return_code>;<plugin_output>”
where...

• timestamp is the time in time_t format (seconds since the UNIX epoch) that the service check was perfomed (or
submitted). Please note the single space after the right bracket.

• host_name is the short name of the host associated with the service in the service definition

• svc_description is the description of the service as specified in the service definition

• return_code is the return code of the check (0=OK, 1=WARNING, 2=CRITICAL, 3=UNKNOWN)

• plugin_output is the text output of the service check (i.e. the plugin output)

A service must be defined in Shinken before Shinken will accept passive check results for it! Shinken will ignore all
check results for services that have not been configured before it was last (re)started.

An example shell script of how to submit passive service check results to Shinken can be found in the documentation
on volatile services.

5.8.6 Submitting Passive Host Check Results

External applications can submit passive host check results to Shinken by writing a PRO-
CESS_HOST_CHECK_RESULT external command to the external command file.

The format of the command is as follows: “[<timestamp>]PROCESS_HOST_CHECK_RESULT;<configobjects/host_name>;<configobjects/host_status>;<plugin_output>”
where...

• timestamp is the time in time_t format (seconds since the UNIX epoch) that the host check was perfomed (or
submitted). Please note the single space after the right bracket.

• host_name is the short name of the host (as defined in the host definition)

• host_status is the status of the host (0=UP, 1=DOWN, 2=UNREACHABLE)

• plugin_output is the text output of the host check

A host must be defined in Shinken before you can submit passive check results for it! Shinken will ignore all check
results for hosts that had not been configured before it was last (re)started.

Once data has been received by the Arbiter process, either directly or through a Receiver daemon, it will forward the
check results to the appropriate Scheduler to apply check logic.

5.8.7 Passive Checks and Host States

Unlike with active host checks, Shinken does not (by default) attempt to determine whether or host is DOWN or
UNREACHABLE with passive checks. Rather, Shinken takes the passive check result to be the actual state the host is
in and doesn’t try to determine the hosts’ actual state using the reachability logic. This can cause problems if you are
submitting passive checks from a remote host or you have a distributed monitoring setup where the parent/child host
relationships are different.

5.8. Passive Checks 85

Shinken Documentation, Release 2.4

You can tell Shinken to translate DOWN/UNREACHABLE passive check result states to their “proper” state by using
the “translate_passive_host_checks” variable. More information on how this works can be found here.

Passive host checks are normally treated as HARD states, unless the “passive_host_checks_are_soft” option is en-
abled.

5.8.8 Submitting Passive Check Results From Remote Hosts

DEPRECATED IMAGE - TODO REPLACE WITH MORE ACCURATE DEPICTION

If an application that resides on the same host as Shinken is sending passive host or service check results, it can simply
write the results directly to the external command named pipe file as outlined above. However, applications on remote
hosts can’t do this so easily.

In order to allow remote hosts to send passive check results to the monitoring host, there a multiple modules to that
can send and accept passive check results. NSCA, TSCA, Shinken WebService and more.

Learn more about the different passive check result/command protocols and how to configure them.

5.9 State Types

5.9.1 Introduction

The current state of monitored services and hosts is determined by two components:

• The status of the service or host (i.e. OK, WARNING, UP, DOWN, etc.)

• The type of state the service or host is in.

There are two state types in Shinken - SOFT states and HARD states. These state types are a crucial part of the
monitoring logic, as they are used to determine when event handlers are executed and when notifications are initially
sent out.

This document describes the difference between SOFT and HARD states, how they occur, and what happens when
they occur.

5.9.2 Service and Host Check Retries

In order to prevent false alarms from transient problems, Shinken allows you to define how many times a service or host
should be (re)checked before it is considered to have a “real” problem. This is controlled by the max_check_attempts
option in the host and service definitions. Understanding how hosts and services are (re)checked in order to determine
if a real problem exists is important in understanding how state types work.

86 Chapter 5. The Basics

Shinken Documentation, Release 2.4

5.9.3 Soft States

Soft states occur in the following situations...

• When a service or host check results in a non-OK or non-UP state and the service check has not yet been
(re)checked the number of times specified by the max_check_attempts directive in the service or host definition.
This is called a soft error.

• When a service or host recovers from a soft error. This is considered a soft recovery.

The following things occur when hosts or services experience SOFT state changes:

• The SOFT state is logged.

• Event handlers are executed to handle the SOFT state.

SOFT states are only logged if you enabled the log_service_retries or log_host_retries options in your main configu-
ration file.

The only important thing that really happens during a soft state is the execution of event handlers. Using event
handlers can be particularly useful if you want to try and proactively fix a problem before it turns into a HARD state.
The $HOSTSTATETYPE$ or $SERVICESTATETYPE$ macros will have a value of “SOFT” when event handlers are
executed, which allows your event handler scripts to know when they should take corrective action. More information
on event handlers can be found here.

5.9.4 Hard States

Hard states occur for hosts and services in the following situations:

• When a host or service check results in a non-UP or non-OK state and it has been (re)checked the number of
times specified by the max_check_attempts option in the host or service definition. This is a hard error state.

• When a host or service transitions from one hard error state to another error state (e.g. WARNING to CRITI-
CAL).

• When a service check results in a non-OK state and its corresponding host is either DOWN or UNREACHABLE.

• When a host or service recovers from a hard error state. This is considered to be a hard recovery.

• When a passive host check is received. Passive host checks are treated as HARD unless the pas-
sive_host_checks_are_soft option is enabled.

The following things occur when hosts or services experience HARD state changes:

• The HARD state is logged.

• Event handlers are executed to handle the HARD state.

• Contacts are notifified of the host or service problem or recovery.

The $HOSTSTATETYPE$ or $SERVICESTATETYPE$ macros will have a value of “HARD” when event handlers are
executed, which allows your event handler scripts to know when they should take corrective action. More information
on event handlers can be found here.

5.9.5 Example

Here’s an example of how state types are determined, when state changes occur, and when event handlers and
notifications are sent out. The table below shows consecutive checks of a service over time. The service has a
max_check_attempts value of 3.

5.9. State Types 87

Shinken Documentation, Release 2.4

Time Check
#

State State
Type

State
Change

Notes

0 1 OK HARD No Initial state of the service
1 1 CRIT-

ICAL
SOFT Yes First detection of a non-OK state. Event handlers execute.

2 2 WARN-
ING

SOFT Yes Service continues to be in a non-OK state. Event handlers execute.

3 3 CRIT-
ICAL

HARD Yes Max check attempts has been reached, so service goes into a HARD state.
Event handlers execute and a problem notification is sent out. Check # is
reset to 1 immediately after this happens.

4 1 WARN-
ING

HARD Yes Service changes to a HARD WARNING state. Event handlers execute and
a problem notification is sent out.

5 1 WARN-
ING

HARD No Service stabilizes in a HARD problem state. Depending on what the
notification interval for the service is, another notification might be sent out.

6 1 OK HARD Yes Service experiences a HARD recovery. Event handlers execute and a
recovery notification is sent out.

7 1 OK HARD No Service is still OK.
8 1 UN-

KNOWN
SOFT Yes Service is detected as changing to a SOFT non-OK state. Event handlers

execute.
9 2 OK SOFT Yes Service experiences a SOFT recovery. Event handlers execute, but

notification are not sent, as this wasn’t a “real” problem. State type is set
HARD and check # is reset to 1 immediately after this happens.

10 1 OK HARD No Service stabilizes in an OK state.

5.10 Time Periods

Abstract

or...“Is This a Good Time?”

5.10.1 Introduction

Timeperiod definitions allow you to control when various aspects of the monitoring and alerting logic can operate. For
instance, you can restrict:

• When regularly scheduled host and service checks can be performed

• When notifications can be sent out

• When notification escalations can be used

• When dependencies are valid

88 Chapter 5. The Basics

Shinken Documentation, Release 2.4

5.10.2 Precedence in Time Periods

Timeperod definitions may contain multiple types of directives, including weekdays, days of the month, and calen-
dar dates. Different types of directives have different precedence levels and may override other directives in your
timeperiod definitions. The order of precedence for different types of directives (in descending order) is as follows:

• Calendar date (2008-01-01)

• Specific month date (January 1st)

• Generic month date (Day 15)

• Offset weekday of specific month (2nd Tuesday in December)

• Offset weekday (3rd Monday)

• Normal weekday (Tuesday)

Examples of different timeperiod directives can be found here.

5.10.3 How Time Periods Work With Host and Service Checks

Host and service definitions have an optional “check_period” directive that allows you to specify a timeperiod that
should be used to restrict when regularly scheduled, active checks of the host or service can be made.

If you do not use the “check_period directive” to specify a timeperiod, Shinken will be able to schedule active checks
of the host or service anytime it needs to. This is essentially a 24x7 monitoring scenario.

Specifying a timeperiod in the “check_period directive” allows you to restrict the time that Shinken perform regularly
scheduled, active checks of the host or service. When Shinken attempts to reschedule a host or service check, it will
make sure that the next check falls within a valid time range within the defined timeperiod. If it doesn’t, Shinken will
adjust the next check time to coincide with the next “valid” time in the specified timeperiod. This means that the host
or service may not get checked again for another hour, day, or week, etc.

On-demand checks and passive checks are not restricted by the timeperiod you specify in the “check_period directive”.
Only regularly scheduled active checks are restricted.

A service’s timeperiod is inherited from its host only if it’s not already defined. In a new shinken installation, it’s
defined to “24x7” in generic-service. If you want service notifications stopped when the host is outside its notification
period, you’ll want to comment “notification_period” and/or “notification_enabled” in templates.cfg:generic-service
1.

Unless you have a good reason not to do so, I would recommend that you monitor all your hosts and services using
timeperiods that cover a 24x7 time range. If you don’t do this, you can run into some problems during “blackout”
times (times that are not valid in the timeperiod definition):

• The status of the host or service will appear unchanged during the blackout time.

• Contacts will mostly likely not get re-notified of problems with a host or service during blackout times.

• If a host or service recovers during a blackout time, contacts will not be immediately notified of the recovery.

5.10.4 How Time Periods Work With Contact Notifications

By specifying a timeperiod in the “notification_period” directive of a host or service definition, you can control when
Shinken is allowed to send notifications out regarding problems or recoveries for that host or service. When a host
notification is about to get sent out, Shinken will make sure that the current time is within a valid range in the “noti-
fication_period” timeperiod. If it is a valid time, then Shinken will attempt to notify each contact of the problem or
recovery.

5.10. Time Periods 89

http://www.shinken-monitoring.org/forum/index.php/topic,377.0.html

Shinken Documentation, Release 2.4

You can also use timeperiods to control when notifications can be sent out to individual contacts. By using the “ser-
vice_notification_period” and “host_notification_period” directives in contact definitions, you’re able to essentially
define an “on call” period for each contact. Contacts will only receive host and service notifications during the times
you specify in the notification period directives.

Examples of how to create timeperiod definitions for use for on-call rotations can be found here.

5.10.5 How Time Periods Work With Notification Escalations

Service and host Notification Escalations have an optional escalation_period directive that allows you to specify a
timeperiod when the escalation is valid and can be used. If you do not use the “escalation_period” directive in an esca-
lation definition, the escalation is considered valid at all times. If you specify a timeperiod in the “escalation_period”
directive, Shinken will only use the escalation definition during times that are valid in the timeperiod definition.

5.10.6 How Time Periods Work With Dependencies

Host and Service Dependencies have an optional “dependency_period” directive that allows you to specify a timepe-
riod when the dependendies are valid and can be used. If you do not use the “dependency_period” directive in a de-
pendency definition, the dependency can be used at any time. If you specify a timeperiod in the “dependency_period”
directive, Shinken will only use the dependency definition during times that are valid in the timeperiod definition.

5.11 Determining Status and Reachability of Network Hosts

5.11.1 Introduction

If you’ve ever work in tech support, you’ve undoubtedly had users tell you “the Internet is down”. As a techie, you’re
pretty sure that no one pulled the power cord from the Internet. Something must be going wrong somewhere between
the user’s chair and the Internet.

Assuming its a technical problem, you begin to search for the problem. Perhaps the user’s computer is turned off,
maybe their network cable is unplugged, or perhaps your organization’s core router just took a dive. Whatever the
problem might be, one thing is most certain - the Internet isn’t down. It just happens to be unreachable for that user.

Shinken is able to determine whether the hosts you’re monitoring are in a DOWN or UNREACHABLE state. These
are very different (although related) states and can help you quickly determine the root cause of network problems. To
achieve this goal you must first and foremost define a check_command for the host you are monitoring. From there,
here’s how the reachability logic works to distinguish between these two states...

5.11.2 Example Network

Take a look at the simple network diagram below. For this example, let us assume you’re monitoring all the hosts
(server, routers, switches, etc) that are pictured, meaning you have defined check_commands for each of the various
hosts. Shinken is installed and running on the Shinken host.

If you have not defined a check_command for your host, Shinken will assume that the host is always UP. Mean-
ing that the logic described will NOT kick-in.

90 Chapter 5. The Basics

Shinken Documentation, Release 2.4

5.11.3 Defining Parent/Child Relationships

In order for Shinken to be able to distinguish between DOWN and UNREACHABLE states for the hosts that are being
monitored, you’ll need to tell Shinken how those hosts are connected to each other - from the standpoint of the Shinken
daemon. To do this, trace the path that a data packet would take from the Shinken daemon to each individual host.
Each switch, router, and server the packet encounters or passes through is considered a “hop” and will require that you
define a parent/child host relationship in Shinken. Here’s what the host parent/child relationships look like from the
viewpoint of Shinken:

5.11. Determining Status and Reachability of Network Hosts 91

Shinken Documentation, Release 2.4

Now that you know what the parent/child relationships look like for hosts that are being monitored, how do you
configure Shinken to reflect them? The parents directive in your host definitions allows you to do this. Here’s what the
(abbreviated) host definitions with parent/child relationships would look like for this example:

define host{
host_name Shinken ; <-- The local host has no parent - it is the topmost host

}

define host{
host_name Switch1
parents Shinken

}

define host{
host_name Web
parents Switch1

}

define host{
host_name FTP
parents Switch1

92 Chapter 5. The Basics

Shinken Documentation, Release 2.4

}

define host{
host_name Router1
parents Switch1

}

define host{
host_name Switch2
parents Router1

}

define host{
host_name Wkstn1
parents Switch2

}

define host{
host_name HPLJ2605
parents Switch2

}

define host{
host_name Router2
parents Router1

}

define host{
host_name somewebsite.com
parents Router2

}

5.11.4 Reachability Logic in Action

Now that you’re configured Shinken with the proper parent/child relationships for your hosts, let’s see what happen
when problems arise. Assume that two hosts - Web and Router1 - go offline...

5.11. Determining Status and Reachability of Network Hosts 93

Shinken Documentation, Release 2.4

When hosts change state (i.e. from UP to DOWN), the host reachability logic in Shinken kicks in. The reachability
logic will initiate parallel checks of the parents and children of whatever hosts change state. This allows Shinken to
quickly determine the current status of your network infrastructure when changes occur.

94 Chapter 5. The Basics

Shinken Documentation, Release 2.4

In this example, Shinken will determine that Web and Router1 are both in DOWN states because the “path” to those
hosts is not being blocked.

Shinken will determine that all the hosts “beneath” Router1 are all in an UNREACHABLE state because Shinken
can’t reach them. Router1 is DOWN and is blocking the path to those other hosts. Those hosts might be running fine,
or they might be offline - Shinken doesn’t know because it can’t reach them. Hence Shinken considers them to be
UNREACHABLE instead of DOWN.

5.11.5 UNREACHABLE States and Notifications

By default, Shinken will notify contacts about both DOWN and UNREACHABLE host states. As an admin/tech, you
might not want to get notifications about hosts that are UNREACHABLE. You know your network structure, and if
Shinken notifies you that your router/firewall is down, you know that everything behind it is unreachable.

If you want to spare yourself from a flood of UNREACHABLE notifications during network outages, you can
exclude the unreachable (u) option from the “notification_options” directive in your host definitions and/or the
“host_notification_options” directive in your contact definitions.

5.11. Determining Status and Reachability of Network Hosts 95

Shinken Documentation, Release 2.4

5.12 Notifications

5.12.1 Introduction

I’ve had a lot of questions as to exactly how notifications work. This will attempt to explain exactly when and how
host and service notifications are sent out, as well as who receives them.

Notification escalations are explained here.

5.12.2 When Do Notifications Occur?

The decision to send out notifications is made in the service check and host check logic. Host and service notifications
occur in the following instances...

• When a hard state change occurs. More information on state types and hard state changes can be found here.

• When a host or service remains in a hard non-OK state and the time specified by the “notification_interval”
option in the host or service definition has passed since the last notification was sent out (for that specified host
or service).

5.12.3 Who Gets Notified?

Each host and service definition has a “contact_groups” option that specifies what contact groups receive notifications
for that particular host or service. Contact groups can contain one or more individual contacts.

When Shinken sends out a host or service notification, it will notify each contact that is a member of any contact
groups specified in the “contact_groups” option of the service definition. Shinken realizes that a contact may be a
member of more than one contact group, so it removes duplicate contact notifications before it does anything.

5.12.4 What Filters Must Be Passed In Order For Notifications To Be Sent?

Just because there is a need to send out a host or service notification doesn’t mean that any contacts are going to get
notified. There are several filters that potential notifications must pass before they are deemed worthy enough to be
sent out. Even then, specific contacts may not be notified if their notification filters do not allow for the notification to
be sent to them. Let’s go into the filters that have to be passed in more detail...

5.12.5 Program-Wide Filter:

The first filter that notifications must pass is a test of whether or not notifications are enabled on a program-wide basis.
This is initially determined by the “enable_notifications” directive in the main config file, but may be changed during
runtime from the web interface. If notifications are disabled on a program-wide basis, no host or service notifications
can be sent out - period. If they are enabled on a program-wide basis, there are still other tests that must be passed...

96 Chapter 5. The Basics

Shinken Documentation, Release 2.4

5.12.6 Service and Host Filters:

The first filter for host or service notifications is a check to see if the host or service is in a period of scheduled
downtime. It it is in a scheduled downtime, no one gets notified. If it isn’t in a period of downtime, it gets passed on to
the next filter. As a side note, notifications for services are suppressed if the host they’re associated with is in a period
of scheduled downtime.

The second filter for host or service notification is a check to see if the host or service is flapping (if you enabled flap
detection). If the service or host is currently flapping, no one gets notified. Otherwise it gets passed to the next filter.

The third host or service filter that must be passed is the host- or service-specific notification options. Each service
definition contains options that determine whether or not notifications can be sent out for warning states, critical states,
and recoveries. Similarly, each host definition contains options that determine whether or not notifications can be sent
out when the host goes down, becomes unreachable, or recovers. If the host or service notification does not pass these
options, no one gets notified. If it does pass these options, the notification gets passed to the next filter...

Notifications about host or service recoveries are only sent out if a notification was sent out for the original problem.
It doesn’t make sense to get a recovery notification for something you never knew was a problem.

The fourth host or service filter that must be passed is the time period test. Each host and service definition has a
“notification_period” option that specifies which time period contains valid notification times for the host or service.
If the time that the notification is being made does not fall within a valid time range in the specified time period, no
one gets contacted. If it falls within a valid time range, the notification gets passed to the next filter...

If the time period filter is not passed, Shinken will reschedule the next notification for the host or service (if its in
a non-OK state) for the next valid time present in the time period. This helps ensure that contacts are notified of
problems as soon as possible when the next valid time in time period arrives.

The last set of host or service filters is conditional upon two things: (1) a notification was already sent out about a
problem with the host or service at some point in the past and (2) the host or service has remained in the same non-OK
state that it was when the last notification went out. If these two criteria are met, then Shinken will check and make
sure the time that has passed since the last notification went out either meets or exceeds the value specified by the
“notification_interval” option in the host or service definition. If not enough time has passed since the last notification,
no one gets contacted. If either enough time has passed since the last notification or the two criteria for this filter were
not met, the notification will be sent out! Whether or not it actually is sent to individual contacts is up to another set
of filters...

5.12.7 Contact Filters:

At this point the notification has passed the program mode filter and all host or service filters and Shinken starts to
notify all the people it should. Does this mean that each contact is going to receive the notification? No! Each contact
has their own set of filters that the notification must pass before they receive it.

Contact filters are specific to each contact and do not affect whether or not other contacts receive notifications.

The first filter that must be passed for each contact are the notification options. Each contact definition contains options
that determine whether or not service notifications can be sent out for warning states, critical states, and recoveries.
Each contact definition also contains options that determine whether or not host notifications can be sent out when the
host goes down, becomes unreachable, or recovers. If the host or service notification does not pass these options, the
contact will not be notified. If it does pass these options, the notification gets passed to the next filter...

Notifications about host or service recoveries are only sent out if a notification was sent out for the original problem.
It doesn’t make sense to get a recovery notification for something you never knew was a problem...

The last filter that must be passed for each contact is the time period test. Each contact definition has a “notifica-
tion_period” option that specifies which time period contains valid notification times for the contact. If the time that
the notification is being made does not fall within a valid time range in the specified time period, the contact will not
be notified. If it falls within a valid time range, the contact gets notified!

5.12. Notifications 97

Shinken Documentation, Release 2.4

5.12.8 Notification Methods

You can have Shinken notify you of problems and recoveries pretty much anyway you want: pager, cellphone, email,
instant message, audio alert, electric shocker, etc. How notifications are sent depends on the notification commands
that are defined in your object definition files.

If you install Shinken according to the quickstart guide, it should be configured to send email notifications.
You can see the email notification commands that are used by viewing the contents of the following file:
“/etc/shinken/objects/commands.cfg”.

Specific notification methods (paging, etc.) are not directly incorporated into the Shinken code as it just doesn’t make
much sense. The “core” of Shinken is not designed to be an all-in-one application. If service checks were embedded in
Shinken’s core it would be very difficult for users to add new check methods, modify existing checks, etc. Notifications
work in a similar manner. There are a thousand different ways to do notifications and there are already a lot of packages
out there that handle the dirty work, so why re-invent the wheel and limit yourself to a bike tire? Its much easier to
let an external entity (i.e. a simple script or a full-blown messaging system) do the messy stuff. Some messaging
packages that can handle notifications for pagers and cellphones are listed below in the resource section.

5.12.9 Notification Type Macro

When crafting your notification commands, you need to take into account what type of notification is occurring. The
$NOTIFICATIONTYPE$ macro contains a string that identifies exactly that. The table below lists the possible values
for the macro and their respective descriptions:

Value Description
PROBLEM A service or host has just entered (or is still in) a problem state. If this is a service notification,

it means the service is either in a WARNING, UNKNOWN or CRITICAL state. If this is a
host notification, it means the host is in a DOWN or UNREACHABLE state.

RECOVERY A service or host recovery has occurred. If this is a service notification, it means the service
has just returned to an OK state. If it is a host notification, it means the host has just returned to
an UP state.

ACKNOWL-
EDGEMENT

This notification is an acknowledgement notification for a host or service problem.
Acknowledgement notifications are initiated via the web interface by contacts for the particular
host or service.

FLAP-
PINGSTART

The host or service has just started flapping.

FLAP-
PINGSTOP

The host or service has just stopped flapping.

FLAP-
PINGDIS-
ABLED

The host or service has just stopped flapping because flap detection was disabled..

DOWNTIMES-
TART

The host or service has just entered a period of scheduled downtime. Future notifications will
be suppressed.

DOWN-
TIMESTOP

The host or service has just exited from a period of scheduled downtime. Notifications about
problems can now resume.

DOWNTIME-
CANCELLED

The period of scheduled downtime for the host or service was just cancelled. Notifications
about problems can now resume.

5.12.10 Detailled Notification Macros

Shinken introduces optional hosts and services macros that adds informations about which impacts have an object and
what to do. That can be usefull when users that are notified, works for many customers and don’t know very well
every services. So that help users without knowledge to take a decision about it.

98 Chapter 5. The Basics

Shinken Documentation, Release 2.4

There are 3 objects macros to add on host or service object definition :

• _DETAILLEDESC : provides detailled informations about monitored object.

• _IMPACT : describes impacts that will have on infrastructure and help to specify severity.

• _FIXACTIONS : How resolved the problem. Only available on service type objects.

define service{
service_description Oracle-KEY-tnsping
use oracle-service
register 0
host_name oracle
check_command check_oracle_tnsping!KEY
duplicate_foreach _databases
business_impact 5
aggregation /oracle/KEY/connectivity

_DETAILLEDESC Ping Oracle Listener
_IMPACT Critical: Can't network connect to database
_FIXACTIONS Start listener !

}

define host{
host_name hostA
use generic_host

_DETAILLEDESC This is control all the IT !!!
_IMPACT Critical: Nothing can work without it !

}

Then all you got to do is to change notificationways of your contact to get detailled email notification, example :

define contact{
contact_name hotline
use generic-contact
email hotline@corporation.com
can_submit_commands 1
notificationways detailled-email

}

5.12.11 Helpful Resources

There are many ways you could configure Shinken to send notifications out. Its up to you to decide which method(s)
you want to use. Once you do that you’ll have to install any necessary software and configure notification commands
in your config files before you can use them. Here are just a few possible notification methods:

• Email

• Pager

• Phone (SMS)

• WinPopup message

• Yahoo, ICQ, or MSN instant message

• Audio alerts

• etc...

5.12. Notifications 99

Shinken Documentation, Release 2.4

Basically anything you can do from a command line can be tailored for use as a notification command.

If you’re looking for an alternative to using email for sending messages to your pager or cellphone, check out these
packages. They could be used in conjunction with Shinken to send out a notification via a modem when a problem
arises. That way you don’t have to rely on email to send notifications out (remember, email may not work if there are
network problems). I haven’t actually tried these packages myself, but others have reported success using them...

• Gnokii (SMS software for contacting Nokia phones via GSM network)

• QuickPage (alphanumeric pager software)

• Sendpage (paging software)

If you want to try out a non-traditional method of notification, you might want to mess around with audio alerts. If you
want to have audio alerts played on the monitoring server (with synthesized speech), check out Festival. If you’d rather
leave the monitoring box alone and have audio alerts played on another box, check out the Network Audio System
(NAS) and rplay projects.

5.13 Active data acquisition modules

5.13.1 Overview

An integrated acquisition module is an optional piece of software that is launched by a Shinken daemon. The module
is responsible for doing data acquisition using a specific protocol in a very high performance method. This is preferred
over repeatedly calling plugin scripts.

100 Chapter 5. The Basics

http://www.gnokii.org/
http://www.qpage.org/
http://www.sendpage.org/
http://www.cstr.ed.ac.uk/projects/festival/
http://radscan.com/nas
http://radscan.com/nas
http://rplay.doit.org/

Shinken Documentation, Release 2.4

5.13.2 SNMP data acquisition module

Shinken provides an integrated SNMP data acquisition module: SnmpBooster

• What is the SnmpBooster module

• Install and configure the SNMP acquisition module.

• Reference - SnmpBooster troubleshooting

• Reference - SnmpBooster Design specification

• Reference - SnmpBooster configuration dictionnary

5.13.3 NRPE data acquisition module

Shinken provides an integrated NRPE data acquisition module. NRPE is a protocol used to communicate with agents
installed on remote hosts. It is implemented in the poller daemon to transparently execute NRPE data acquisition.
It reads the check command and opens the connection itself. This provides a big performance boost for launching
check_nrpe based checks.

The command definitions are identical to the check_nrpe calls.

• Install and configure the NRPE acquisition module.

5.13.4 Notes on community Packs

Community provided monitoring packs may use the integrated acquisition modules.

Community provided plugins are complimentary to the integrated acquisition modules.

5.14 Setup Network and logical dependencies in Shinken

5.14.1 Network dependencies

What are network dependencies ?

If you’ve ever worked in tech support, you’ve undoubtedly had users tell you “the Internet is down”. As a techie,
you’re pretty sure that no one pulled the power cord from the Internet. Something must be going wrong somewhere
between the user’s chair and the Internet.

Assuming its a technical problem, you begin to search for the root problem. Perhaps the user’s computer is turned
off, maybe their network cable is unplugged, or perhaps your organization’s core router just took a dive. Whatever the
problem might be, one thing is most certain - the Internet isn’t down. It just happens to be unreachable for that user.

Shinken is able to determine whether the hosts you’re monitoring are in a DOWN or UNREACHABLE state. To do
this simply define a check_command for your host. These are very different (although related) states and can help you
quickly determine the root cause of network problems. Such dependencies are also possible for applications problems,
like your web app is not available because your database is down.

5.14. Setup Network and logical dependencies in Shinken 101

Shinken Documentation, Release 2.4

Example Network

Take a look at the simple network diagram below. For this example, lets assume you’re monitoring all the hosts (server,
routers, switches, etc) that are pictured by defining a check_command for each host. Shinken is installed and running
on the Shinken host. If you have not defined a check_command for your host, Shinken will assume that the host
is always UP. Meaning that the logic described will NOT kick-in.

Defining Parent/Child Relationships

The network dependencies will be named “parent/child” relationship. The parent is the switch for example, and the
child will be the server.

In order for Shinken to be able to distinguish between DOWN and UNREACHABLE states for the hosts that are being
monitored, you’ll first need to tell Shinken how those hosts are connected to each other - from the standpoint of the
Shinken daemon. To do this, trace the path that a data packet would take from the Shinken daemon to each individual
host. Each switch, router, and server the packet encounters or passes through is considered a “hop” and will require
that you define a parent/child host relationship in Shinken. Here’s what the host parent/child relationships looks like
from the viewpoint of Shinken:

102 Chapter 5. The Basics

Shinken Documentation, Release 2.4

Now that you know what the parent/child relationships look like for hosts that are being monitored, how do you
configure Shinken to reflect them? The parents directive in your host definitions allows you to do this. Here’s what the
(abbreviated) host definitions with parent/child relationships would look like for this example:

define host{
host_name Shinken ; <-- The local host has no parent - it is the topmost host

}

define host{
host_name Switch1
parents Shinken

}

define host{
host_name Web
parents Switch1

}

define host{
host_name FTP
parents Switch1

5.14. Setup Network and logical dependencies in Shinken 103

Shinken Documentation, Release 2.4

}

define host{
host_name Router1
parents Switch1

}

define host{
host_name Switch2
parents Router1

}

define host{
host_name Wkstn1
parents Switch2

}

define host{
host_name HPLJ2605
parents Switch2

}

define host{
host_name Router2
parents Router1

}

define host{
host_name somewebsite.com
parents Router2

}

So basically: in your “child”, you declare who is your parent(s).

Reachability Logic in Action

Now that you’re configured Shinken with the proper parent/child relationships for your hosts, let’s see what happen
when problems arise. Assume that two hosts - Web and Router1 - go offline...

104 Chapter 5. The Basics

Shinken Documentation, Release 2.4

When hosts change state (i.e. from UP to DOWN), the host reachability logic in Shinken kicks in. The reachability
logic will initiate parallel checks of the parents and children of whatever hosts change state. This allows Shinken to
quickly determine the current status of your network infrastructure when changes occur. During this additional check
time, the notification for the web and router1 hosts are blocked because we don’t know yet WHO is the root problem.

5.14. Setup Network and logical dependencies in Shinken 105

Shinken Documentation, Release 2.4

In this example, Shinken will determine that Web and Router1 are both in DOWN states because the “path” to those
hosts is not being blocked (switch1 is still alive), and so it will allow web and router1 notifications to be sent.

Shinken will determine that all the hosts “beneath” Router1 are all in an UNREACHABLE state because Shinken
can’t reach them. Router1 is DOWN and is blocking the path to those other hosts. Those hosts might be running
fine, or they might be offline - Shinken doesn’t know because it can’t reach them. Hence Shinken considers them to
be UNREACHABLE instead of DOWN, and won’t send notifications about them. Such hosts and services beneath
router1 are the impacts of the root problem “router1”

What about more than one parent for a host?

You see that there is a ‘s’ in parents. Because you can define as many parent as you want for a host (like if you got
an active/passive switch setup). The host will be UNREACHABLE only, and only if all it’s parents are down or
unreachable. If one is still alive, it will be down. See this as a big OR rule.

106 Chapter 5. The Basics

Shinken Documentation, Release 2.4

UNREACHABLE States and Notifications

One important point to remember is Shinken only notifies about root problems. If we allow it to notify for root
problems AND impacts you will receive too many notifications to quickly find and solve the root problems. That’s
why Shinken will notify contacts about DOWN hosts, but not for UNREACHABLE ones.

What about notification about services of a down or unreachable hosts?

You will not be notified about all critical or warning errors on a down or unreachable host, because such service states
are the impacts of the host root problem. You don’t have to configure anything, Shinken will suppress these useless
notifications automatically. The official documentation provides more information on how notifications work.

5.14.2 Logical dependencies

Network is not the only element that can have problems. Applications can too.

Service and host dependencies are an advanced feature of Shinken that allows you to control the behavior of hosts and
services based on the status of one or more other hosts or services. This section explains how dependencies work,
along with the differences between host and service dependencies.

Let’s starts with service dependencies. We can take the sample of a Web application service that will depend upon a
database service. If the database is failed, it’s useless to notify about the web application one, because you already
know it’s failed. So Shinken will notify you about your root problem, the database failed, and not about all its
impacts, here your web application.

With only useful notifications, you will be able to find and fix them quickly and not take one hour to find the root
problem in your mails.

Service Dependencies Overview

There are a few things you should know about service dependencies:

• A service can be dependent on one or more other services

• A service can be dependent on services which are not associated with the same host

• Advanced service dependencies can be used to cause service check execution and service notifications to be
suppressed under different circumstances (OK, WARNING, UNKNOWN, and/or CRITICAL states)

• Advanced service dependencies might only be valid during specific timeperiods

Defining simple advanced dependencies

Define a service dependency is quite easy in fact. All you need is to define in your Web application service that it is
dependent upon the database service.

define service{
host_name srv-web
service_description Http
service_dependencies srv-db,mysql

}

So here the web service Http on the host srv-web will depend upon the database service mysql on the host srv-db. If
the mysql service has failed, there will be no notifications for service srv-web. If Shinken gets an error state check on
the Http service, it will raised a mysql check and suppress the http notification until it knows if the Http service is a
root problem or an impact.

5.14. Setup Network and logical dependencies in Shinken 107

Shinken Documentation, Release 2.4

Dependencies inheritance

By default, service dependencies are inherited. Let take an example where the mysql service depend upon a nfs
service.

define service{
host_name srv-db
service_description mysql
service_dependencies srv-file,nfs,srv-dns,dns

}

If Shinken find a problem on Http, it will raise a check on mysql. If this one got a problem too, it will raise a check
on the nfs service and srv-dns dns service. If one of these has got a problem too, it will be tagged as the root problem,
and will raise a notification for the nfs administrator or dns administrator. If these are ok (dns and nfs), the notification
will be sentfor the mysql admin.

And with the host down/unreachable logic?

The dependency logic is done in parallel to the network one. If one logic say it’s an impact, then it will tag the problem
state as an impact. For example, if the srv-db is down a warning/critical alert on the Http service will be set as an
impact, like the mysql one, and the root problem will be the srv-db host that will raise only one notification, a host
problem.

Advanced dependencies

For timeperiod limited dependencies or for specific states activation (like for critical states but not warning), please
consult the advanced dependencies documentation.

5.15 Update Shinken

Whatever the way you used to install the previous version of Shinken, you should use the same to update. Otherwise
juste start from scratch a new Shinken install.

As mentioned in the installation page, 1.X and 2.0 have big differences.

Warning: Don’t forget to backup your shinken configuration before updating!

Update can be done by following (more or less) those steps :

• Create the new paths for Shinken (if you don’t want new paths then you will have to edit Shinken configuration)

mkdir /etc/shinken /var/lib/shinken/ /var/run/shinken /var/log/shinken
chown shinken:shinken /etc/shinken /var/lib/shinken/ /var/run/shinken /var/log/shinken

• Install Shinken by following the installation instructions

• Copy your previous Shinken configuration to the new path

cp -pr /usr/local/shinken/etc/<your_config_dir> /etc/shinken/

• Copy the modules directory to the new one

cp -pr /usr/local/shinken/shinken/modules /var/lib/shinken/

108 Chapter 5. The Basics

Shinken Documentation, Release 2.4

• Edit the Shinken configuration to match you need. Basically you will need to remove the default shinken
configuration of daemons and put the previous one. Shinken-specific is now split into several files. Be carful
with the ini ones, you may merge them if you modified them. Careful to put the right cfg_dir statement in the
shinken.cfg.

Important: Modules directories have changed a lot in Shinken 2.0. If you copy paste the previous one it will work
BUT you may have trouble if you use Shinken CLI.

5.15. Update Shinken 109

Shinken Documentation, Release 2.4

110 Chapter 5. The Basics

CHAPTER 6

Medium

111

Shinken Documentation, Release 2.4

6.1 Business rules

6.1.1 View your infrastructure from a business perspective

The main role of this feature is to allow users to have in one “indicator” the aggregation of other states. This indicator
can provide a unique view for users focused on different roles.

Typical roles:

• Service delivery Management

• Business Management

• Engineering

• IT support

Let’s take a simple example of a service delivery role for an ERP application. It mainly consists of the following IT
components:

• 2 databases, in high availability, so with one database active, the service is considered up

• 2 web servers, in load sharing, so with one web server active, the service is considered up

• 2 load balancers, again in high availability

These IT components (Hosts in this example) will be the basis for the ERP service.

With business rules, you can have an “indicator” representing the “aggregated service” state for the ERP service!
Shinken already checks all of the IT components one by one including processing for root cause analysis from a host
and service perspective.

6.1.2 How to define Business Rules?

It’s a simple service (or a host) with a “special” check_command named bp_rule. :)

This makes it compatible with all your current habits and UIs. As the service aggregation is considered as any other
state from a host or service, you can get notifications, actions and escalations. This means you can have contacts that
will receive only the relevant notifications based on their role.

Warning: You do not have to define “bp_rule” command, it’s purely internal. You should NOT define it in you
checkcommands.cfg file, or the configuration will be invalid due to duplicate commands!

Here is a configuration for the ERP service example, attached to a dummy host named “servicedelivery”.

define service{
use standard-service
host_name servicedelivery
service_description ERP
check_command bp_rule!(h1,database1 | h2,database2) & (h3,Http1 | h4,Http4) & (h5,IPVS1 | h6,IPVS2)

}

That’s all!

Note: A complete service delivery view should include an aggregated view of the end user availability perspective
states, end user performance perspective states, IT component states, application error states, application performance
states. This aggregated state can then be used as a metric for Service Management (basis for defining an SLA).

112 Chapter 6. Medium

Shinken Documentation, Release 2.4

6.1.3 With “need at least X elements” clusters

In some cases, you know that in a cluster of N elements, you need at least X of them to run OK. This is easily defined,
you just need to use the “X of:” operator.

Here is an example of the same ERP but with 3 http web servers, and you need at least 2 of them (to handle the load):

define service{
use standard-service
host_name servicedelivery
service_description ERP
check_command bp_rule!(h1,database1 | h2,database2) & (2 of: h3,Http1 & h4,Http4 & h5,Http5) & (h6,IPVS1 | h7,IPVS2)

}

It’s done :)

Possible values of X in X of: expressions

The X of: expression may be configured different values depending on the needs. The supported expressions are
described below:

• A positive integer, which means “at least X host/servicices should be up“

• A positive percentage, which means “at least X percents of hosts/services should be up”. This percentage
expression may be combined with Groupping expression expansion to build expressions such as “95 percents
of the web front ends shoud be up”. This way, adding hosts in the web frontend hostgroup is sufficient, and the
QoS remains the same.

• A negative integer, which means “at most X host/servicices may be down“

• A negative percentage, which means “at most X percents of hosts/services should may be down”. This percent-
age expression may be combined with Groupping expression expansion to build expressions such as “5 percents
of the web front ends may be down”. This way, adding hosts in the web frontend hostgroup is sufficient, and the
QoS remains the same.

Example:

define service{
use standard-service
host_name servicedelivery
service_description ERP
check_command bp_rule!(h1,database1 | h2,database2) & (h6,IPVS1 | h7,IPVS2) & 95% of: g:frontend,Http

}

6.1.4 The NOT rule

You can define a not state rule. It can be useful for active/passive setups for example. You just need to add a ! before
your element name.

Example:

define service{
use generic-service
host_name servicedelivery
service_description Cluster_state
check_command bp_rule!(h1,database1 & !h2,database2)

}

Aggregated state will be ok if database1 is ok and database2 is warning or critical (stopped).

6.1. Business rules 113

Shinken Documentation, Release 2.4

6.1.5 Manage degraded status

In the Xof: way the only case where you got a “warning” (=”degraded but not dead”) it’s when all your elements are
in warning. But you should want to be in warning if 1 or your 3 http server is critical: the service is still running, but
in a degraded state.

For this you can use the extended operator X,Y,Zof:

• X: number min of OK to get an overall OK state

• Y: number min of WARNING to get an overall WARNING state

• Z: number min of CRITICAL to get an overall CRITICAL state

State processing will be done the following order:

• is Ok possible?

• is critical possible?

• is warning possible?

• if none is possible, set OK.

Here are some example for business rules about 5 services A, B, C, D and E. Like 5,1,1of:A|B|C|D|E

Example 1

A B C D E
Warn Ok Ok Ok Ok

Rules and overall states:

• 4of: –> Ok

• 5,1,1of: –> Warning

• 5,2,1of: –> Ok

Example 2

A B C D E
Warn Warn Ok Ok Ok

Rules and overall states:

• 4of: –> Warning

• 3of: –> Ok

• 4,1,1of: –> Warning

Example 3

A B C D E
Crit Crit Ok Ok Ok

Rules and overall states:

• 4of: –> Critical

• 3of: –> Ok

114 Chapter 6. Medium

Shinken Documentation, Release 2.4

• 4,1,1of: –> Critical

Example 4

A B C D E
Warn Crit Ok Ok Ok

Rules and overall states:

• 4of: –> Critical

• 4,1,1of: –> Critical

Example 5

A B C D E
Warn Warn Crit Ok Ok

Rules and overall states:

• 2of: –> Ok

• 4,1,1of: –> Critical

Example 6

A B C D E
Warn Crit Crit Ok Ok

Rules and overall states:

• 2of: –> Ok

• 2,4,4of: –> Ok

• 4,1,1of: –> Critical

• 4,1,2of: –> Critical

• 4,1,3of: –> Warning

Classic cases

Let’s look at some classic setups, for MAX elements.

• ON/OFF setup: MAXof: <=> MAX,MAX,MAXof:

• Warning as soon as problem, and critical if all criticals: MAX,1,MAXof:

• Worse state: MAX,1,1

6.1.6 Grouping expression expansion

Sometimes, you do not want to specify explicitly the hosts/services contained in a business rule, but prefer use a
grouping expression such as hosts from the hostgroup xxx, services holding lablel yyy or hosts which name matches
regex zzz.

6.1. Business rules 115

Shinken Documentation, Release 2.4

To do so, it is possible to use a grouping expression which is expanded into hosts or services. The supported expressions
use the following syntax:

flag:expression

The flag is a single character qualifying the expansion type. The supported types (and associated flags) are described
in the table below.

Host flags

F Expansion Example Equivalent to
g Content of the hostgroup g:webs web-srv1 & web-srv2 & ...
l Hosts which are holding label l:front web-srv1 & db-srv1 & ...
r Hosts which name matches regex r:^web web-srv1 & web-srv2 & ...
t Hosts which are holding tag t:http web-srv1 & web-srv2 & ...

Service flags

F Expansion Example Equivalent to
g Content of the servicegroup g:web web-srv1,HTTP & web-srv2,HTTP & ...
l Services which are holding label l:front web-srv1,HTTP & db-srv1,MySQL & ...
r Services which description matches regex r:^HTTPS? web-srv1,HTTP & db-srv2,HTTPS & ...
t Services which are holding tag t:http web-srv1,HTTP & db-srv2,HTTPS & ...

• Labels are arbitrary names which may be set on any host or service using the label directive.

• Tags are the template names inherited by hosts or services, generally coming from packs.

It is possible to combine both host and service expansion expression to build complex business rules.

Note: A business rule expression always has to be made of a host expression (selector if you prefer) AND a ser-
vice expression (still selector) separated by a coma when looking at service status. If not so, there is no mean
to distinguish a host status from a service status in the expression. In servicegroup flag case, as you do not want
to apply any filter on the host (you want ALL services which are member of the XXX service group, whichever
host they are bound to), you may use the * host selector expression. The correct expression syntax should be:
bp_rule!*,g:my-servicegroup The same rule applies to other service selectors (l, r, t, and so on).

Examples of combined expansion expression

You want to build a business rule including all web servers composing the application frontend.

l:front,r:HTTPS?

which is equivalent to:

web-srv1,HTTP & web-srv3,HTTPS

You may obviously combine expression expansion with standard expressions.

l:front,h:HTTPS? & db-srv1,MySQL

which is equivalent to:

(web-srv1,HTTP & web-srv3,HTTPS) & db-srv1,MySQL

116 Chapter 6. Medium

Shinken Documentation, Release 2.4

6.1.7 Smart notifications

As of any host or service check, a business rule having its state in a non OK state may send notifications depending on
its notification_options directive. But what if the underlying problems are known, and may be acknowledged
? The default behaviour is to continue sending notifications.

This may be what you need, but what if you want the business rule to stop sending notifications ?

Imagine your business rule is composed of all your site’s web front ends. If a host fails, you want to know it, but
once someone starts to fix the issue, you don’t want to be notified anymore. A possible solution is to acknowledge
the business rule itself. But if you do so, any other failing host won’t get notified. Another solution is to enable smart
notification on the business rule check.

Smart notifications is a way to disable notifications on a business rule having all its problems acknowledged. If a new
problem occurs, notifications will be enabled back while it has not been acknowledged.

To enable smart notifications, simply set the business_rule_smart_notifications to 1.

Downtimes management

Downtimes are a bit more tricky to handle. While acknowledgement are necessarily set by humans, downtimes may be
set automatically (for instance, by maintenance periods). You may still want to be notified during downtime periods.
As a consequence, downtimes are not taken into account by smart notification processing, unless explicitly told to do
so.

To enable downtimes in smart notifications processing, simply set the business_rule_downtime_as_ack to
1.

6.1.8 Consolidated services

Another useful usage of business rules is consolidated services. Imagine you have a large web cluster, composed of
hundreds of nodes. If a small portion of the nodes fail, you may receive a large number of notifications, which is
not convenient. To prevent this, you may use a business rule looking like bp_rule!g:web,.... If you disable
notifications by setting notification_options to n on the underlying hosts or services, you would receive a
single notification with all the failing nodes in one time, which may be clearer.

To avoid having to manually set notification_options on each node, you may use two convenient directives
on the business rule side: business_rule_host_notification_options which enforces notification op-
tions of underlying hosts, and business_rule_service_notification_options which does the same for
services.

This feature, combined with the convenience of packs and Smart notifications allows to build large consolidated
services very easily.

Example:

define host {
use http
host_name web-01
hostgroups web
...
}

define host {
use http
host_name web-02
hostgroups web

6.1. Business rules 117

Shinken Documentation, Release 2.4

...
}

define host {
host_name meta
...
}

define service {
host_name meta
service_description Web cluster
check_command bp_rule!g:web,g:HTTPS?
business_rule_service_notification_options n
...
}

In the previous example, HTTP/HTTPS services come from the http pack. If one or more http servers fail, a single
notification would be sent, rather than one per failing service.

Warning: It would be very tempting in this situation to acknowledge the consolidated service if a notification is
sent. Never do so, as any, as any new failure would not be reported. You still have to acknowledge each independent
failure. Take care to explain this to people in charge of the operations.

6.1.9 Macro expansion

It is possible in a business rule expression to include macros, as you would do for normal check command defini-
tion. You may for instance define a custom macro on the host or service holding the business rule, and use it in the
expression.

Combined with macro modulation, this allows to define consolidated services with variable fault tolerance thresholds
depending on the timeperiod.

Imagine your web frontend cluster composed of dozens servers serving the web site. If one is failing, this would not
impact the service so much. During the day, when the complete team is at work, a single failure should be notified and
fixed immediately. But during the night, you may consider that losing let’s say up to 5% of the cluster has no impact
on the QoS: thus waking up the on-call guy is not useful.

You may handle that with a consolidated service using macro modulation combined with an Xof: expression.

Example:

define macromodulation{
macromodulation_name web-xof
modulation_period night
_XOF_WEB -5% of:
}

define host {
use http
host_name web-01
hostgroups web
...
}

define host {
use http
host_name web-02

118 Chapter 6. Medium

Shinken Documentation, Release 2.4

hostgroups web
...
}

define host {
host_name meta
macromodulations web-xof
...
}

define service {
host_name meta
service_description Web cluster
check_command bp_rule!$_HOSTXOF_WEB$ g:web,g:HTTPS?
business_rule_service_notification_options n
...
}

In the previous example, during the day, we’re outside the modulation period. The _XOF_WEB is not defined, so the
resulting business rule is g:web,g:HTTPS?. During the night, the macro is set a value, then the resulting business
rule is -5% of: g:web,g:HTTPS?, allowing to lose 5% of the cluster silently.

6.1.10 Business rule check output

By default, business rules checks have no output as there’s no real script or binary behind. But it is still possible to
control their output using a templating system.

To do so, you may set the business_rule_output_template option on the host or service holding the business
rule. This attribute may contain any macro. Macro expansion works as follows:

• All macros outside the (and) sequences are expanded using attributes set on the host or service holding
the business rule.

• All macros between the (and) sequences are expanded for each underlying problem using its attributes.

All macros defined on hosts or services composing or holding the business rule may be used in the outer or inner part
of the template respectively.

To ease writing output template for business rules made of both hosts and services, 3 convinience macros hav-
ing the same meaning for each type may be used: STATUS, SHORTSTATUS, and FULLNAME, which expand re-
spectively to the host or service status, its status abreviated form and its full name (host_name for hosts, or
host_name/service_description for services).

Example:

Imagine you want to build a consolidated service which notifications contain links to the underlying problems in the
WebUI, allowing to acknowledge them without having to search. You may use a template looking like:

define service {
host_name meta
service_description Web cluster
check_command bp_rule!$_HOSTXOF_WEB$ g:web,g:HTTPS?
business_rule_output_template Down web services: $(($SHORTSTATUS$) $HOSTNAME$)$
...
}

The resulting output would look like Down web services: link1 link2 link3 ... where linkN are
urls leading to the problem in the WebUI.

6.1. Business rules 119

Shinken Documentation, Release 2.4

6.2 Monitoring a DMZ

There is two ways for monitoring a DMZ network:

• got a poller on the LAN, and launch check from it, so the firewall should allow monitoring traffic (like
nrpe, snmp, etc)

• got a poller on the DMZ, so only the Shinken communications should be open through the firewall

If you can take the first, use it :)

If you can’t because your security manager is not happy about it, you should put a poller in the DMZ. So look at the
page distributed shinken first, because you will need a distributed architecture.

Pollers a “dumb” things. They look for jobs to all scheduler (of their realm, if you don’t know what is it from now,
it’s not important). So if you just put a poller in the DMZ network aside another in the LAN, some checks for the dmz
will be take by the LAN one, and some for the lan will be take by the DMZ one. It’s not a good thing of course :)

6.2.1 Tag your hosts and pollers for being “in the DMZ”

So we will need to “tag” checks, so they will be able to run only in the dmz poller, or the lan one.

This tag is done with the poller_tag parameter. It can be applied on the following objects:

• pollers

• commands

• services

• hosts

It’s quite simple: you ‘tag’ objects, and the pollers have got tags too. You’ve got an implicit inheritance in this order:
hosts->services->commands. If a command doesn’t have a poller_tag, it will take the one from the service. And if this
service doesn’t have one neither, it will take the tag from its host.

You just need to install a poller with the ‘DMZ’ tag in the DMZ and then add it to all hosts (or services) in the DMZ.
They will be taken by this poller and you just need to open the port to this poller fom the LAN. Your network admins
will be happier :)

6.2.2 Configuration part

So you need to declare in the /etc/pollers/poller-master.cfg (or c:shinkenetcpollerspoller-master.cfg):

define poller{

poller_name poller-DMZ
address server-dmz
port 7771
poller_tags DMZ

}

And “tag” some hosts and/or some services.

define host{

host_name server-DMZ-1
[...]
poller_tag DMZ

120 Chapter 6. Medium

Shinken Documentation, Release 2.4

[...]
}

And that’s all :)

All checks for the server-DMZ-1 will be launch from the poller-dmz, and only from it (unless there is another poller in
the DMZ with the same tag). you are sure that this check won’t be launched from the pollers within the LAN, because
untagged pollers can’t take tagged checks.

6.3 Shinken High Availability

Shinken makes it easy to have a high availability architecture. Just as easily as the load balancing feature at distributed
shinken

Shinken is business friendly when it comes to meeting availability requirements.

You learned how to add new poller satellites in the distributed shinken. For the HA the process is the same You just
need to add new satellites in the same way, then define them as “spares”.

You can (should) do the same for all the satellites for a complete HA architecture.

6.3.1 Install all spares daemons on server3

We keep the load balancing of the previous installation and we add a new server (if you do not need load balancing,
just take the previous server). This new HA server will be server3 (server2 was for poller load balancing).

So like the previous case, you need to install the daemons but not launch them for now. Look at the 10 min start
tutorial to know how to install them on server3.

6.3.2 Declare these spares on server1

Daemons on the server1 need to know where their spares are. Everything is done in the /etc/shinken directory. Each
daemon has its own directory into /etc/shinken

Add theses lines regarding the daemon (ex schedulers/scheduler-spare.cfg):

define scheduler{

scheduler_name scheduler-spare
address server3
port 7768
spare 1
}

define poller{

poller_name poller-spare
address server3
port 7771
spare 1

}

define reactionner{

6.3. Shinken High Availability 121

Shinken Documentation, Release 2.4

reactionner_name reactionner-spare
address server3
port 7769
spare 1
}

define receiver{

receiver_name receiver-spare
address server3
port 7773
spare 1

}

define broker{

broker_name broker-spare
address server3
port 7772
spare 1
modules Simple-log,Livestatus

}

define arbiter{

arbiter_name arbiter-spare
address server3
host_name server3
port 7770
spare 1

}

Ok. Configuring HA is defining new daemons on server3 as “spare 1”.

WAIT! There are 2 main pitfalls that can halt HA in its tracks:

• Modules - If your master daemon has modules, you must add them on the spare as well!!!!

• Hostname - arbiter-spare has a host_name parameter: it must be the hostname of server3 (so in 99% of
the cases, server3). Launch hostname to know the name of your server. If the value is incorrect, the spare
arbiter won’t start!

6.3.3 Copy all configuration from server1 to server3

Important: It’s very important that the two arbiter daemons have the same /etc/shinken directory. The whole
configuration should also be rsync’ed or copied once a day to ensure the spare arbiter can take over in case of a
massive failure of active arbiter.

So copy it in the server3 (overwrite the old one) in the same place.

You do not need to sync all configuration files for hosts and services in the spare. When the master starts, it will
synchronize with the spare. But beware, if server1 dies and you must start from fresh on server3, you will not have
the full configuration! So synchronize the whole configuration once a day using rsync or other similar method, it is a
requirement.

122 Chapter 6. Medium

Shinken Documentation, Release 2.4

6.3.4 Start :)

Ok, everything is ready. All you need now is to start all the daemons:

$server1: sudo /etc/init.d/shinken start
$server3: sudo /etc/init.d/shinken start

If an active daemon die, the spare will take over. This is detected in a minute or 2 (you can change it in the
daemons/deamon-spare.cfg, for each daemon).

Note: For stateful fail-over of a scheduler, link one of the distributed retention modules such as memcache or redis to
your schedulers. This will avoid losing the current state of the checks handled by a failed scheduler. Without a retention
module, the spare scheduler taking over will need to reschedule all checks and check states will be PENDING until
this has completed.

Note: You now have a high availability architecture.

6.4 Mixed GNU/linux AND Windows pollers

There can be as many pollers as you want. And Shinken runs under a lot of systems, like GNU/Linux and Windows.
It could be useful to make windows hosts checks using windows pollers (by a server IN the domain), and all the others
by a GNU/Linux one (like all pure network based checks).

And in fact you can, and again it’s quite easy :) Its important to remember that all pollers connect to all schedulers, so
we must have a way to distinguish ‘windows’ checks from ‘gnu/linux’ ones.

The poller_tag/poller_tags parameter is useful here. It can be applied on the following objects:

• pollers

• commands

• services

• hosts

It’s quite simple: you ‘tag’ objects, and the pollers have got tags too. You’ve got an implicit inheritance between
hosts->services->commands. If a command doesn’t have a poller_tag, it will take the one from the service. And if
this service doesn’t have one neither, it will take the tag from its host. It’s all like the “DMZ” case, but here apply for
another purpose.

Let take an example with a ‘windows’ tag:

define command{

command_name CheckWMI
command_line c:\shinken\libexec\check_wmi.exe -H $HOSTADRESS$ -r $ARG1$
poller_tag Windows

}

define poller{

poller_name poller-windows
address 192.168.0.4
port 7771

6.4. Mixed GNU/linux AND Windows pollers 123

Shinken Documentation, Release 2.4

poller_tags Windows
}

And the magic is here: all checks launched with this command will be taken by the poller-windows (or another that
has such a tag). A poller with no tags will only take ‘untagged’ commands.

6.5 Notifications and escalations

6.5.1 Escalations

Shinken supports optional escalation of contact notifications for hosts and services. Escalation of host and service
notifications is accomplished by defining escalations and call them from your hosts and services definitions.

Tip: Legacy Nagios host_escalations and service_escalations objects are still managed, but it’s advised to migrate
and simplify your configuration with simple escalations objects.

6.5.2 Definition and sample

Notifications are escalated if and only if one or more escalation linked to your host/service matches the current notifi-
cation that is being sent out. Look at the example below:

define escalation{
escalation_name To_level_2
first_notification_time 60
last_notification_time 240
notification_interval 60
contact_groups level2

}

And then you can call it from a service (or a host):

define service{
use webservice
host_name webserver
service_description HTTP
escalations To_level_2
contact_groups level1

}

Here, notifications sent before the fist_notification_time (60 = 60*interval_length*seconds = 60*60s = 1h) will be send
to the contact_groups of the service, and between one hour and 4 hours (last_notification_time) it will be escalated to
the level2 contact group.

If there is no escalations available (like after 4 hours) it fail back to the default service contact_groups, level1 here.

124 Chapter 6. Medium

Shinken Documentation, Release 2.4

6.5.3 Lower contact groups

When defining notification escalations, look if it’s interesting that were members of “lower” escalations (i.e. those
with lower notification time ranges) should also be included in “higher” escalation definitions or not. This can be done
to ensure that anyone who gets notified of a problem continues to get notified as the problem is escalated.

In our previous example it becomes:

define escalation{
escalation_name To_level_2
first_notification_time 60
last_notification_time 240
notification_interval 60
contact_groups level1,level2

}

6.5.4 Multiple escalations levels

It can be interesting to have more than one level for escalations. Like if problems are send to your level1, and after 1
hour it’s send to your level2 and after 4 hours it’s send to the level3 until it’s resolved.

All you need is to define theses two escalations and link them to your host/service:

define escalation{
escalation_name To_level_2
first_notification_time 60
last_notification_time 240
notification_interval 60
contact_groups level2

}

define escalation{
escalation_name To_level_3
first_notification_time 240
last_notification_time 0
notification_interval 60
contact_groups level3

}

And for your service:

define service{
use webservice
host_name webserver
service_description HTTP
escalations To_level_2,To_level_3
contact_groups level1

}

6.5.5 Overlapping Escalation Ranges

Notification escalation definitions can have notification ranges that overlap. Take the following example:

define escalation{
escalation_name To_level_2
first_notification_time 60
last_notification_time 240

6.5. Notifications and escalations 125

Shinken Documentation, Release 2.4

notification_interval 60
contact_groups level2

}

define escalation{
escalation_name To_level_3
first_notification_time 120
last_notification_time 0
notification_interval 60
contact_groups level3

}

In the example above:

• The level2 is notified at one hour

• level 2 and 3 are notified at 2 hours

• Only the level 3 is notified after 4 hours

6.5.6 Recovery Notifications

Recovery notifications are slightly different than problem notifications when it comes to escalations. If the problem
was escalated, or was about to reach a new level, who notified for the recovery?

The rule is very simple: we notify about the recovery every one that was notified about the problem, and only them.

6.5.7 Short escalations and long notification Intervals

It’s also interesting to see that with escalation, if the notification interval is longer than the next escalation time, it’s
this last value that will be taken into account.

Let take an example where your service got:

define service{
notification_interval 1440
escalations To_level_2,To_level_3

}

Then with the escalations objects:

define escalation{
escalation_name To_level2
first_notification_time 60
last_notification_time 120
contact_groups level2

}

define escalation{
escalation_name To_level_3
first_notification_time 120
last_notification_time 0
contact_groups level3

}

Here let say you have a problem HARD on the service at t=0. It will notify the level1. The next notification should be
at t=1440 minutes, so tomorrow. It’s okay for classic services (too much notification is DANGEROUS!) but not for
escalated ones.

126 Chapter 6. Medium

Shinken Documentation, Release 2.4

Here, at t=60 minutes, the escalation will raise, you will notify the level2 contact group, and then at t=120 minutes
you will notify the level3, and here one a day until they solve it!

So you can put large notification_interval and still have quick escalations times, it’s not a problem :)

6.5.8 Time Period Restrictions

Under normal circumstances, escalations can be used at any time that a notification could normally be sent out for the
host or service. This “notification time window” is determined by the “notification_period” directive in the host or
service definition.

You can optionally restrict escalations so that they are only used during specific time periods by using the “esca-
lation_period” directive in the host or service escalation definition. If you use the “escalation_period” directive to
specify a Time Period Definition during which the escalation can be used, the escalation will only be used during
that time. If you do not specify any “escalation_period” directive, the escalation can be used at any time within the
“notification time window” for the host or service.

Escalated notifications are still subject to the normal time restrictions imposed by the “notification_period” directive
in a host or service definition, so the timeperiod you specify in an escalation definition should be a subset of that larger
“notification time window”.

6.5.9 State Restrictions

If you would like to restrict the escalation definition so that it is only used when the host or service is in a particular
state, you can use the “escalation_options” directive in the host or service escalation definition. If you do not use the
“escalation_options” directive, the escalation can be used when the host or service is in any state.

6.5.10 Legacy definitions: host_escalations and service_escalations based on no-
tification number

The Nagios legacy escalations definitions are still managed, but it’s strongly advice to switch to escalations based on
time and call by host/services because it’s far more flexible.

Hera are example of theses legacy definitions:

define serviceescalation{
host_name webserver
service_description HTTP
first_notification 3
last_notification 5
notification_interval 45
contact_groups nt-admins,managers

}

define hostescalation{
host_name webserver
first_notification 6
last_notification 0
notification_interval 60
contact_groups nt-admins,managers,everyone

}

It’s based on notification number to know if the escalation should be raised or not. Remember that with this form you
cannot mix long notification_interval and short escalations time!

6.5. Notifications and escalations 127

Shinken Documentation, Release 2.4

6.6 The Notification Ways, AKA mail 24x7, SMS only the night for a
same contact

Let take a classical example: you want email notification 24x7 but SMS only the night and for critical alerts only.
How do this with contacts definitions? You have to duplicate the contact. One with notification_period of 24x7 and
the email command, and one other with send-by-sms for the night. Duplicate contacts can be hard to manage in
services definitions afterward !

That why notification ways are useful: you defined some notification ways (that look really like contacts) and you
linked them to your contact.

6.6.1 Example

For example, you can have the below configuration: your contact, a happy admin:

define contact{
contact_name happy_admin
alias happy_admin
email admin@localhost
pager +33699999999
notificationways email_in_day,sms_the_night

}

And now define our notification ways:

Email the whole 24x7 is okay
define notificationway{

notificationway_name email_in_day
service_notification_period 24x7
host_notification_period 24x7
service_notification_options w,u,c,r,f
host_notification_options d,u,r,f,s
service_notification_commands notify-service
host_notification_commands notify-host

}

But SMS only at night
define notificationway{

notificationway_name sms_at_night
service_notification_period night
host_notification_period night
service_notification_options c ; so only CRITICAL
host_notification_options d ; and DOWN
service_notification_commands notify-service-sms
host_notification_commands notify-host-sms

}

And you can call theses ways from several contacts :)

The contact is valid because he’s got valid notificationways. For each notification, we ask for all notification_ways to
give us the commands to send. If their notification options or timeperiod is not good, they just do not give one.

6.6.2 Mix old contact with new notification says

Of course, you can still have “old school” contact definition, and even with the notificationways parameters. The
service_notification_period parameter of the contact will just be used to create a notificationways like the others, that’s

128 Chapter 6. Medium

Shinken Documentation, Release 2.4

all.

6.7 Passive data acquisition

6.7.1 Overview

Definition

Passive check results are received from external source in an unsolicited manner.

Data routing of Passive check results

Passive check results are received by the Arbiter daemon or the Receiver daemon. Modules loaded on either of the
daemons permit receiving various types of data formats. The Arbiter is the only one who knows which Scheduler
is responsible for the data received. The Arbiter is tasked with administrative blocking functions that can inhibit the
responsiveness of the acquisition from a Receiver. This is not an issue for small Shinken installations, as the Arbiter
daemon will be blocked for very very short periods of time. In large Shinken installations with tens of thousands of
services the Arbiter may induce delays related to passive check result routing.

Shinken 1.2 Shinken uses a direct routing method from the Receiver daemon directly to the appropriate Scheduler for
check results and to the Arbiter daemon for external commands.

In all cases, should the Arbiter or Scheduler process be busy doing another task data from the Receiver will NOT be
lost. It will be queued in the Receiver until the remote daemon can process them.

Configuration Reference

The basics of enabling passive check results in the Shinken configuration

State handling for passive check results

6.7.2 Passive acquisition protocols

NSCA protocol

The NSCA addon consists of a daemon that runs on the Shinken host and a client that is executed from remote
hosts. The daemon will listen for connections from remote clients, performs basic validation on the results being
submitted, and then write the check results directly into the external command named pipe file (as described in the
basics of passive check results configuration) of the Arbiter process or the Receiver process when scaling passive result
processing.

The only consideration here is to make sure to configure Shinken Receiver daemons. These will receive the NSCA
messages and queue them to be sent to the Arbiter or Scheduler for processing. Benefit from the most common
denominator, C compiled cross platform executable, UDP transport, single line output, raw text transmission.

Learn how to configure the NSCA module.

6.7. Passive data acquisition 129

Shinken Documentation, Release 2.4

TSCA protocol

Using TSCA, you can directly embed in your programs check result submission using a variety of programming
languages. Languages such as, but not limited to, Perl, Java and Ruby. Benefit from direct access to Shinken, TCP
transport, multi line output and high performance binary transmission.

Learn how to configure the TSCA module.

Shinken WebService protocol

Shinken has its own Python web service module to receive passive data via HTTP(s) using the bottle.py Python
module. The Web Service is considered experimental, but is being used in production environments. The WS module
is very simple and can be extended or improved easily. It is Python after all.

Benefit from direct access to Shinken, HTTP protocol, TCP transport, firewall friendly, multi line output and high
performance binary transmission.

Learn how to configure the Shinken WebService.

NSCAweb protocol

A much more evolved protocol for sending data than NSCA. Use curl from the command line to send your data, or
submit check results using an HTTP post in your software.

The python NSCAweb listener, http://github.com/smetj/nscaweb, can be hacked to act as a Shinken Receiver module.
It might also be possible to wrestle the current Web Service receiver module to process NSCAweb sent messages, the
format is the same. .. important:: Should someone be interested in implementing an NSCAweb Shinken Receiver
module, support will be provided.

SNMP Traps

Net-SNMP’s snmptrapd and SNMP trap translator are typically used to receive, process, and trigger an alerts. Once
an alert has been identified an execution is launched of send_nsca, or other method to send result data to a Shinken
Receiver daemon. There is no actual Shinken receiver module to receive SNMP traps, but the point is to get the data
sent to the Shinken Receiver daemon.

Learn more about SNMP trap handling.

The snmptt documentation has a good writeup on integrating with Nagios, which also applies to Shinken.

There is also a new project by the Check MK team to build an Event console that will process Traps and Syslog
messages to create Nagios/Shinken passive check results. It is experimental at this time.

OPC protocol

Various open source and commercial SDKs are available to implement a Shinken Receiver module for getting date
from OPC-DA or OPC-UA servers. There is a planned implementations of this module in 2013 for OPC-DA v2 and
OPC-UA, but should someone be interested in implementing one, support will be provided.

AMQP protocol

Adding a Shinken Receiver module to act as a consumer of AMQP messages can be implemented without much fuss.
There are no planned implementations of this module, but should someone be interested in implementing one, support
will be provided. A new broker module for the Canopsis Hypervisor acts as an AMQP endpoint, so this can be used

130 Chapter 6. Medium

http://github.com/smetj/nscaweb

Shinken Documentation, Release 2.4

to develop an AMQP consumer or provider. There is also a Python MQ implementation called Krolyk by Jelle Smet
that submits check results from AMQP to the Shinken command pipe.

6.8 Snapshots

6.8.1 Overview

Definition

Snapshots are on demand command launch to dump a larger state of one host/service when there is a problem in a
period when the administrator is not available (night). It to not enter to the notification logic, it’s only to export a
quick-view/snapshot of the element during a problem (like a list of processes) into a databse so the admin will be able
to look at the problem with more data when he/she will came back.

Data routing of Snapshots commands

Snapshots are like event handlers. They are launched from the reactionner with the same properties (reactionner_tag)
than the event handlers. It’s up to the command to connect to the distant host and grab data. The scheduler is grabbing
the output and create a specific brok object from it so the brokers can get them and export it to modules.

Configuration Reference

Snapshots are command that can be called by hosts and/or services. They are disabled by default, and should be set
to named hosts/services. It’s a very bad idea to enable them on all hosts and services as it will add lot of load on your
distant hosts :)

Exporting the data

The data is exported from the scheduler as a brok (host_snapshot_brok/service_snapshot_brok) and can be grab by
broker modules to exporting to somewhere (like database, flat file, whatever you prefer).

6.8. Snapshots 131

Shinken Documentation, Release 2.4

132 Chapter 6. Medium

CHAPTER 7

Advanced Topics

133

Shinken Documentation, Release 2.4

7.1 External Commands

7.1.1 Introduction

Shinken can process commands from external applications (including the CGIs and others UIs) and alter various
aspects of its monitoring functions based on the commands it receives. External applications can submit commands
by writing to the command file, which is periodically processed by the Nagios daemon.

7.1.2 Enabling External Commands

In order to have Shinken process external commands, make sure you do the following:

• Enable external command checking with the check_external_commands option.

• Specify the location of the command file with the command_file option.

• Setup proper permissions on the directory containing the external command file, as described in the quickstart
guide.

7.1.3 When Does Shinken Check For External Commands?

In fact every loop it look at it and reap all it can have in the pipe.

7.1.4 Using External Commands

External commands can be used to accomplish a variety of things while Shinken is running. Example of what can be
done include temporarily disabling notifications for services and hosts, temporarily disabling service checks, forcing

134 Chapter 7. Advanced Topics

Shinken Documentation, Release 2.4

immediate service checks, adding comments to hosts and services, etc.

7.1.5 Command Format

External commands that are written to the command file have the following format...

[time] command_id;command_arguments

...where time is the time (in “time_t” format) that the external application submitted the external command to the com-
mand file. The values for the “command_id” and “command_arguments” arguments will depend on what command is
being submitted to Shinken.

A full listing of external commands that can be used (along with examples of how to use them) can be found online at
the following URL:

http://www.nagios.org/developerinfo/externalcommands/

7.2 Event Handlers

7.2.1 Introduction

Event handlers are optional system commands (scripts or executables) that are run whenever a host or service state
change occurs.

An obvious use for event handlers is the ability for Shinken to proactively fix problems before anyone is notified.
Some other uses for event handlers include:

• Restarting a failed service

• Entering a trouble ticket into a helpdesk system

• Logging event information to a database

• Cycling power on a host*

• etc.

Cycling power on a host that is experiencing problems with an automated script should not be implemented lightly.
Consider the consequences of this carefully before implementing automatic reboots. :-)

7.2. Event Handlers 135

http://www.nagios.org/developerinfo/externalcommands/

Shinken Documentation, Release 2.4

7.2.2 When Are Event Handlers Executed?

Event handlers are executed when a service or host:

• Is in a SOFT problem state

• Initially goes into a HARD problem state

• Initially recovers from a SOFT or HARD problem state

SOFT and HARD states are described in detail here .

7.2.3 Event Handler Types

There are different types of optional event handlers that you can define to handle host and state changes:

• Global host event handler

• Global service event handler

• Host-specific event handlers

• Service-specific event handlers

Global host and service event handlers are run for every host or service state change that occurs, immediately prior to
any host- or service-specific event handler that may be run.

Event handlers offer functionality similar to notifications (launch some command) but are called each state change,
soft or hard. This allows to call handler function and react to problems before Shinken raises a hard state and starts
sending out notifications.

You can specify global event handler commands by using the global_host_event_handler and
global_service_event_handler options in your main configuration file.

Individual hosts and services can have their own event handler command that should be run to handle state changes.
You can specify an event handler that should be run by using the “event_handler” directive in your host and service
definitions. These host- and service-specific event handlers are executed immediately after the (optional) global host
or service event handler is executed.

Important: Global event handlers are currently not launched as of April 2013:
https://github.com/naparuba/shinken/issues/717

7.2.4 Enabling Event Handlers

Event handlers can be enabled or disabled on a program-wide basis by using the enable_event_handlers in your main
configuration file.

Host- and service-specific event handlers can be enabled or disabled by using the “event_handler_enabled” directive
in your host and service definitions. Host- and service-specific event handlers will not be executed if the global
enable_event_handlers option is disabled.

7.2.5 Event Handler Execution Order

As already mentioned, global host and service event handlers are executed immediately before host- or service-specific
event handlers.

Event handlers are executed for HARD problem and recovery states immediately after notifications are sent out.

136 Chapter 7. Advanced Topics

https://github.com/naparuba/shinken/issues/717

Shinken Documentation, Release 2.4

7.2.6 Writing Event Handler Commands

Event handler commands will likely be shell or perl scripts, but they can be any type of executable that can run from a
command prompt. At a minimum, the scripts should take the following macros as arguments:

For Services: $SERVICESTATE$, $SERVICESTATETYPE$, $SERVICEATTEMPT$

For Hosts: $HOSTSTATE$, $HOSTSTATETYPE$, $HOSTATTEMPT$

The scripts should examine the values of the arguments passed to it and take any necessary action based upon those
values. The best way to understand how event handlers work is to see an example. Lucky for you, one is provided
below.

Additional sample event handler scripts can be found in the “contrib/eventhandlers/” subdirectory of the Nagios dis-
tribution. Some of these sample scripts demonstrate the use of external commands to implement a redundant and
distributed monitoring environments.

7.2.7 Permissions For Event Handler Commands

Event handler commands will normally execute with the same permissions as the user under which Shinken is running
on your machine. This can present a problem if you want to write an event handler that restarts system services, as
root privileges are generally required to do these sorts of tasks.

Ideally you should evaluate the types of event handlers you will be implementing and grant just enough permissions to
the Shinken user for executing the necessary system commands. You might want to try using sudo to accomplish this.

7.2.8 Service Event Handler Example

The example below assumes that you are monitoring the “HTTP” server on the local machine and have specified
restart-httpd as the event handler command for the “HTTP” service definition. Also, I will be assuming that you have
set the “max_check_attempts” option for the service to be a value of 4 or greater (i.e. the service is checked 4 times
before it is considered to have a real problem). An abbreviated example service definition might look like this...

define service{
host_name somehost
service_description HTTP
max_check_attempts 4
event_handler restart-httpd
...

}

Once the service has been defined with an event handler, we must define that event handler as a command. An example
command definition for restart-httpd is shown below. Notice the macros in the command line that I am passing to the
event handler script - these are important!

define command{
command_name restart-httpd
command_line /usr/local/nagios/libexec/eventhandlers/restart-httpd $SERVICESTATE$ $SERVICESTATETYPE$ $SERVICEATTEMPT$

}

Now, let’s actually write the event handler script (this is the “/usr/local/nagios/libexec/eventhandlers/restart-httpd”
script).

#!/bin/sh
#
Event handler script for restarting the web server on the local machine
#

7.2. Event Handlers 137

http://www.courtesan.com/sudo/sudo

Shinken Documentation, Release 2.4

Note: This script will only restart the web server if the service is
retried 3 times (in a "soft" state) or if the web service somehow
manages to fall into a "hard" error state.
#
What state is the HTTP service in?
case "$1" in
OK)

The service just came back up, so don't do anything...
;;

WARNING)
We don't really care about warning states, since the service is probably still running...
;;

UNKNOWN)
We don't know what might be causing an unknown error, so don't do anything...
;;

CRITICAL)
Aha! The HTTP service appears to have a problem - perhaps we should restart the server...
Is this a "soft" or a "hard" state?
case "$2" in

We're in a "soft" state, meaning that Nagios is in the middle of retrying the
check before it turns into a "hard" state and contacts get notified...
SOFT)

What check attempt are we on? We don't want to restart the web server on the first
check, because it may just be a fluke!

case "$3" in

Wait until the check has been tried 3 times before restarting the web server.
If the check fails on the 4th time (after we restart the web server), the state
type will turn to "hard" and contacts will be notified of the problem.
Hopefully this will restart the web server successfully, so the 4th check will
result in a "soft" recovery. If that happens no one gets notified because we
fixed the problem!
3)
echo -n "Restarting HTTP service (3rd soft critical state)..."

Call the init script to restart the HTTPD server
/etc/rc.d/init.d/httpd restart
;;

esac
;;

The HTTP service somehow managed to turn into a hard error without getting fixed.
It should have been restarted by the code above, but for some reason it didn't.
Let's give it one last try, shall we?
Note: Contacts have already been notified of a problem with the service at this
point (unless you disabled notifications for this service)
HARD)

echo -n "Restarting HTTP service..."
Call the init script to restart the HTTPD server
/etc/rc.d/init.d/httpd restart
;;

esac
;;

esac
exit 0

The sample script provided above will attempt to restart the web server on the local machine in two different instances:

138 Chapter 7. Advanced Topics

Shinken Documentation, Release 2.4

• After the service has been rechecked for the 3rd time and is in a SOFT CRITICAL state

• After the service first goes into a HARD CRITICAL state

The script should theoretically restart and web server and fix the problem before the service goes into a HARD problem
state, but we include a fallback case in the event it doesn’t work the first time. It should be noted that the event handler
will only be executed the first time that the service falls into a HARD problem state. This prevents Shinken from
continuously executing the script to restart the web server if the service remains in a HARD problem state. You don’t
want that. :-)

That’s all there is to it! Event handlers are pretty simple to write and implement, so give it a try and see what you can
do.

Note: you may need to:

• disable event handlers during downtimes (either by setting no_event_handlers_during_downtimes=1, or
by checking $HOSTDOWNTIME$ and $SERVICEDOWNTIME$)

• make sure you want event handlers to be run even outside of the notification_period

7.3 Volatile Services

7.3.1 Introduction

Shinken has the ability to distinguish between “normal” services and “volatile” services. The is_volatile option in each
service definition allows you to specify whether a specific service is volatile or not. For most people, the majority of
all monitored services will be non-volatile (i.e. “normal”). However, volatile services can be very useful when used
properly...

7.3.2 What Are They Useful For?

Volatile services are useful for monitoring...

• Things that automatically reset themselves to an “OK” state each time they are checked

• Events such as security alerts which require attention every time there is a problem (and not just the first time)

7.3.3 What’s So Special About Volatile Services?

Volatile services differ from “normal” services in three important ways. Each time they are checked when they are in
a hard non-OK state, and the check returns a non-OK state (i.e. no state change has occurred)...

• The non-OK service state is logged

• Contacts are notified about the problem (if that’s what should be done). Notification intervals are ignored for
volatile services.

• The event handler for the service is run (if one has been defined)

These events normally only occur for services when they are in a non-OK state and a hard state change has just
occurred. In other words, they only happen the first time that a service goes into a non-OK state. If future checks of
the service result in the same non-OK state, no hard state change occurs and none of the events mentioned take place
again.

Tip: If you are only interested in logging, consider using stalking options instead.

7.3. Volatile Services 139

Shinken Documentation, Release 2.4

7.3.4 The Power Of Two

• Shinken Configuration

• PortSentry Configuration

• Port Scan Script

If you combine the features of volatile services and passive service checks, you can do some very useful things.
Examples of this include handling “SNMP” traps, security alerts, etc.

How about an example... Let’s say you’re running PortSentry to detect port scans on your machine and automatically
firewall potential intruders. If you want to let Shinken know about port scans, you could do the following...

Shinken Configuration

• Create a service definition called Port Scans and associate it with the host that PortSentry is running on.

• Set the “max_check_attempts” directive in the service definition to 1. This will tell Shinken to immediate force
the service into a hard state when a non-OK state is reported.

• Set the “active_checks_enabled” directive in the service definition to 0. This prevents Shinken from actively
checking the service.

• Set the “passive_checks_enabled” directive in the service definition to 1. This enables passive checks for the
service.

• Set this “is_volatile” directive in the service definition to 1.

PortSentry Configuration

Edit your PortSentry configuration file (“portsentry.conf”) and define a command for the KILL_RUN_CMD directive
as follows:

KILL_RUN_CMD="/usr/local/Shinken/libexec/eventhandlers/submit_check_result *"host_name"* 'Port Scans' 2 'Port scan from host $TARGET$ on port $PORT$. Host has been firewalled.'"

Make sure to replace host_name with the short name of the host that the service is associated with.

Port Scan Script

Create a shell script in the “/var/lib/shinken/libexec/eventhandlers” directory named submit_check_result. The con-
tents of the shell script should be something similar to the following...

#!/bin/sh

Write a command to the Shinken command file to cause
it to process a service check result

echocmd="/bin/echo"

CommandFile="/var/lib/shinken/rw/shinken.cmd"

get the current date/time in seconds since UNIX epoch
datetime=`date +%s`

create the command line to add to the command file
cmdline="[$datetime] PROCESS_SERVICE_CHECK_RESULT;$1;$2;$3;$4"

140 Chapter 7. Advanced Topics

http://sourceforge.net/projects/sentrytools/

Shinken Documentation, Release 2.4

append the command to the end of the command file
`$echocmd $cmdline >> $CommandFile`

What will happen when PortSentry detects a port scan on the machine in the future?

• PortSentry will firewall the host (this is a function of the PortSentry software)

• PortSentry will execute the submit_check_result shell script and send a passive check result to Shinken

• Shinken will read the external command file and see the passive service check submitted by PortSentry

• Shinken will put the Port Scans service in a hard CRITICAL state and send notifications to contacts

Pretty neat, huh?

7.4 Service and Host Freshness Checks

7.4.1 Introduction

Shinken supports a feature that does “freshness” checking on the results of host and service checks. The purpose of
freshness checking is to ensure that host and service checks are being provided passively by external applications on a
regular basis.

Freshness checking is useful when you want to ensure that passive checks are being received as frequently as you
want. This can be very useful in distributed and failover monitoring environments.

7.4.2 How Does Freshness Checking Work?

Shinken periodically checks the freshness of the results for all hosts services that have freshness checking enabled.

• A freshness threshold is calculated for each host or service.

• For each host/service, the age of its last check result is compared with the freshness threshold.

• If the age of the last check result is greater than the freshness threshold, the check result is considered “stale”.

• If the check results is found to be stale, Shinken will force an active check of the host or service by executing
the command specified by in the host or service definition.

An active check is executed even if active checks are disabled on a program-wide or host- or service-specific basis.

For example, if you have a freshness threshold of 60 for one of your services, Shinken will consider that service to be
stale if its last check result is older than 60 seconds.

7.4. Service and Host Freshness Checks 141

Shinken Documentation, Release 2.4

7.4.3 Enabling Freshness Checking

Here’s what you need to do to enable freshness checking...

• Enable freshness checking on a program-wide basis with the check_service_freshness and check_host_freshness
directives.

• Use service_freshness_check_interval and host_freshness_check_interval options to tell Shinken how often it
should check the freshness of service and host results.

• Enable freshness checking on a host- and service-specific basis by setting the “check_freshness” option in your
host and service definitions to a value of 1.

• Configure freshness thresholds by setting the “freshness_threshold” option in your host and service definitions.

• Configure the “check_command” option in your host or service definitions to reflect a valid command that
should be used to actively check the host or service when it is detected as stale.

• The “check_period” option in your host and service definitions is used when Shinken determines when a host
or service can be checked for freshness, so make sure it is set to a valid timeperiod.

If you do not specify a host- or service-specific “freshness_threshold” value (or you set it to zero), Shinken will
automatically calculate a threshold automatically, based on a how often you monitor that particular host or service. I
would recommended that you explicitly specify a freshness threshold, rather than let Shinken pick one for you.

7.4.4 Example

An example of a service that might require freshness checking might be one that reports the status of your nightly
backup jobs. Perhaps you have a external script that submit the results of the backup job to Shinken once the backup is
completed. In this case, all of the checks/results for the service are provided by an external application using passive
checks. In order to ensure that the status of the backup job gets reported every day, you may want to enable freshness
checking for the service. If the external script doesn’t submit the results of the backup job, you can have Shinken fake
a critical result by doing something like this...

Here’s what the definition for the service might look like (some required options are omitted)...

define service{
host_name backup-server
service_description ArcServe Backup Job
active_checks_enabled 0 ; active checks are NOT enabled
passive_checks_enabled 1 ; passive checks are enabled (this is how results are reported)
check_freshness 1
freshness_threshold 93600 ; 26 hour threshold, since backups may not always finish at the same time
check_command no-backup-report ; this command is run only if the service results are “stale"
...other options...
}

Notice that active checks are disabled for the service. This is because the results for the service are only made by an
external application using passive checks. Freshness checking is enabled and the freshness threshold has been set to 26
hours. This is a bit longer than 24 hours because backup jobs sometimes run late from day to day (depending on how
much data there is to backup, how much network traffic is present, etc.). The “no-backup-report” command is executed
only if the results of the service are determined to be stale. The definition of the “no-backup-report” command might
look like this...

define command{
command_name no-backup-report
command_line /var/lib/shinken/libexec/check_dummy 2 "CRITICAL: Results of backup job were not reported!"
}

142 Chapter 7. Advanced Topics

Shinken Documentation, Release 2.4

If Shinken detects that the service results are stale, it will run the “no-backup-report” command as an active service
check. This causes the check_dummy plugin to be executed, which returns a critical state to Shinken. The service
will then go into to a critical state (if it isn’t already there) and someone will probably get notified of the problem.

7.5 Distributed Monitoring

7.5.1 Introduction

Shinken can be configured to support distributed monitoring of network services and resources. Shinken is designed
for it in contrast to the Nagios way of doing it: which is more of a “MacGyver” way.

7.5.2 Goals

The goal in the distributed monitoring environment is to offload the overhead (CPU usage, etc.) of performing and
receiving service checks from a “central” server onto one or more “distributed” servers. Most small to medium sized
shops will not have a real need for setting up such an environment. However, when you want to start monitoring
thousands of hosts (and several times that many services) using Shinken, this becomes quite important.

7.5.3 The global architecture

Shinken’s architecture has been designed according to the Unix Way: one tool, one task. Shinken has an architecture
where each part is isolated and connects to the others via standard interfaces. Shinken is based on the a HTTP backend.
This makes building a highly available or distributed monitoring architecture quite easy. In contrast, the Nagios
daemon does nearly everything: it loads the configuration, schedules and launches checks, and raises notifications.

Major innovations of Shinken over Nagios are to :

• split the different roles into separate daemons

• permit the use of modules to extend and enrich the various Shinken daemons

Shinken core uses distributed programming, meaning a daemon will often do remote invocations of code on other
daemons, this means that to ensure maximum compatibility and stability, the core language, paths and module versions
must be the same everywhere a daemon is running.

7.5.4 Shinken Daemon roles

• Arbiter: The arbiter daemon reads the configuration, divides it into parts (N schedulers = N parts), and dis-
tributes them to the appropriate Shinken daemons. Additionally, it manages the high availability features: if a
particular daemon dies, it re-routes the configuration managed by this failed daemon to the configured spare.
Finally, it receives input from users (such as external commands from nagios.cmd) or passive check results and
routes them to the appropriate daemon. Passive check results are forwarded to the Scheduler responsible for the
check. There can only be one active arbiter with other arbiters acting as hot standby spares in the architecture.

– Modules for data collection: NSCA, TSCA, Ws_arbiter (web service)

– Modules for configuration data storage: MongoDB,

– Modules for status retention: PickleRententionArbiter

– Modules for configuration manipulation: IP_Tag, MySQLImport, GLPI, vmware autolinking and other
task specific modules

7.5. Distributed Monitoring 143

Shinken Documentation, Release 2.4

• Scheduler: The scheduler daemon manages the dispatching of checks and actions to the poller and reactionner
daemons respectively. The scheduler daemon is also responsible for processing the check result queue, analyzing
the results, doing correlation and following up actions accordingly (if a service is down, ask for a host check).
It does not launch checks or notifications. It just keeps a queue of pending checks and notifications for other
daemons of the architecture (like pollers or reactionners). This permits distributing load equally across many
pollers. There can be many schedulers for load-balancing or hot standby roles. Status persistence is achieved
using a retention module.

– Modules for status retention: pickle, nagios, memcache, redis and MongoDB are available.

• Poller: The poller daemon launches check plugins as requested by schedulers. When the check is finished it
returns the result to the schedulers. Pollers can be tagged for specialized checks (ex. Windows versus Unix,
customer A versus customer B, DMZ) There can be many pollers for load-balancing or hot standby spare roles.

– Module for data acquisition: NRPE Module

– Module for data acquisition: CommandFile (Used for check_mk integration which depends on the na-
gios.cmd named pipe)

– Module for data acquisition: SNMPbooster (in development)

• Reactionner: The reactionner daemon issues notifications and launches event_handlers. This centralizes com-
munication channels with external systems in order to simplify SMTP authorizations or RSS feed sources (only
one for all hosts/services). There can be many reactionners for load-balancing and spare roles * Module for
external communications: AndroidSMS

• Broker: The broker daemon exports and manages data from schedulers. The management can is done exclu-
sively with modules. Multiple Broker modules can be enabled simultaneously.

– Module for centralizing Shinken logs: Simple-log (flat file)

– Modules for data retention: Pickle , ToNdodb_Mysql, ToNdodb_Oracle, couchdb

– Modules for exporting data: Graphite-Perfdata, NPCDMOD(PNP4Nagios) and Syslog

– Modules for the Livestatus API - status retention and history: SQLite (default), MongoDB (experimental)

– Modules for the Shinken WebUI: GRAPHITE_UI, PNP_UI. Trending and data visualization.

– Modules for compatibility: Service-Perfdata, Host-Perfdata and Status-Dat

• Receiver (optional): The receiver daemon receives passive check data and serves as a distributed passive com-
mand buffer that will be read by the arbiter daemon. There can be many receivers for load-balancing and hot
standby spare roles. The receiver can also use modules to accept data from different protocols. Anyone serious
about using passive check results should use a receiver to ensure that when the arbiter is not available (when
updating a configuration) all check results are buffered by the receiver and forwarded when the arbiter is back
on-line.

– Module for passive data collection: NSCA, TSCA, Ws_arbiter (web service)

This architecture is fully flexible and scalable: the daemons that require more performance are the poller and the
schedulers. The administrator can add as many as he wants. The broker daemon should be on a well provisioned
server for larger installations, as only a single broker can be active at one time. A picture is worth a thousand words:

144 Chapter 7. Advanced Topics

https://github.com/titilambert/shinken/blob/snmp_booster/shinken/modules/snmp_poller.py

Shinken Documentation, Release 2.4

7.5.5 The smart and automatic load balancing

• Creating independent packs

• The packs aggregations into scheduler configurations

• The configurations sending to satellites

Shinken is able to cut the user configuration into parts and dispatch it to the schedulers. The load balancing is done
automatically: the administrator does not need to remember which host is linked with another one to create packs,
Shinken does it for him.

The dispatch is a host-based one: that means that all services of a host will be in the same scheduler as this host. The
major advantage of Shinken is the ability to create independent configurations: an element of a configuration will not
have to call an element of another pack. That means that the administrator does not need to know all relations among
elements like parents, hostdependencies or service dependencies: Shinken is able to look at these relations and put
these related elements into the same packs.

This action is done in two parts:

• create independent packs of elements

• paste packs to create N configurations for the N schedulers

Creating independent packs

The cutting action is done by looking at two elements: hosts and services. Services are linked with their host so they
will be in the same pack. Other relations are taken into account :

• parent relationship for hosts (like a distant server and its router)

7.5. Distributed Monitoring 145

Shinken Documentation, Release 2.4

• hostdependencies

• servicesdependencies

Shinken looks at all these relations and creates a graph with it. A graph is a relation pack. This can be illustrated by
the following picture :

In this example, we will have two packs:

• pack 1: Host-1 to host-5 and all their services

• pack 2: Host-6 to Host-8 and all their services

The packs aggregations into scheduler configurations

When all relation packs are created, the Arbiter aggregates them into N configurations if the administrator has defined
N active schedulers (no spares). Packs are aggregated into configurations (it’s like “Big packs”). The dispatch looks at
the weight property of schedulers: the higher weight a scheduler has, the more packs it will have. This can be shown
in the following picture :

146 Chapter 7. Advanced Topics

Shinken Documentation, Release 2.4

The configurations sending to satellites

When all configurations are created, the Arbiter sends them to the N active Schedulers. A Scheduler can start process-
ing checks once it has received and loaded it’s configuration without having to wait for all schedulers to be ready(v1.2).
For larger configurations, having more than one Scheduler, even on a single server is highly recommended, as they
will load their configurations(new or updated) faster. The Arbiter also creates configurations for satellites (pollers,
reactionners and brokers) with links to Schedulers so they know where to get jobs to do. After sending the configu-
rations, the Arbiter begins to watch for orders from the users and is responsible for monitoring the availability of the
satellites.

7.5.6 The high availability

• When a node dies

The shinken architecture is a high availability one. Before looking at how this works,let’s take a look at how the load
balancing works if it’s now already done.

When a node dies

Nobody is perfect. A server can crash, an application too. That is why administrators have spares: they can take
configurations of failing elements and reassign them. For the moment the only daemon that does not have a spare is
the Arbiter, but this will be added in the future. The Arbiter regularly checks if everyone is available. If a scheduler or
another satellite is dead, it sends its conf to a spare node, defined by the administrator. All satellites are informed by this
change so they can get their jobs from the new element and do not try to reach the dead one. If a node was lost due to a
network interruption and it comes back up, the Arbiter will notice and ask the old system to drop its configuration. The
availability parameters can be modified from the default settings when using larger configurations as the Schedulers

7.5. Distributed Monitoring 147

Shinken Documentation, Release 2.4

or Brokers can become busy and delay their availability responses. The timers are aggressive by default for smaller
installations. See daemon configuration parameters for more information on the three timers involved. This can be
explained by the following picture :

7.5.7 External commands dispatching

The administrator needs to send orders to the schedulers (like a new status for passive checks). In the Shinken way
of thinking, the users only need to send orders to one daemon that will then dispatch them to all others. In Nagios
the administrator needs to know where the hosts or services are to send the order to the right node. In Shinken the
administrator just sends the order to the Arbiter, that’s all. External commands can be divided into two types :

• commands that are global to all schedulers

• commands that are specific to one element (host/service).

For each command, Shinken knows if it is global or not. If global, it just sends orders to all schedulers. For specific
ones instead it searches which scheduler manages the element referred by the command (host/service) and sends the
order to this scheduler. When the order is received by schedulers they just need to apply them.

7.5.8 Different types of Pollers: poller_tag

• Use cases

The current Shinken architecture is useful for someone that uses the same type of poller for checks. But it can be
useful to have different types of pollers, like GNU/Linux ones and Windows ones. We already saw that all pollers talk
to all schedulers. In fact, pollers can be “tagged” so that they will execute only some checks.

This is useful when the user needs to have hosts in the same scheduler (like with dependencies) but needs some hosts
or services to be checked by specific pollers (see usage cases below).

148 Chapter 7. Advanced Topics

Shinken Documentation, Release 2.4

These checks can in fact be tagged on 3 levels :

• Host

• Service

• Command

The parameter to tag a command, host or service, is “poller_tag”. If a check uses a “tagged” or “untagged” command
in a untagged host/service, it takes the poller_tag of this host/service. In a “untagged” host/service, it’s the command
tag that is taken into account.

The pollers can be tagged with multiple poller_tags. If they are tagged, they will only take checks that are tagged, not
the untagged ones, unless they defined the tag “None”.

Use cases

This capability is useful in two cases:

• GNU/Linux and Windows pollers

• DMZ

In the first case, it can be useful to have a windows box in a domain with a poller daemon running under a domain
account. If this poller launches WMI queries, the user can have an easy Windows monitoring.

The second case is a classic one: when you have a DMZ network, you need to have a dedicated poller that is in the
DMZ, and return results to a scheduler in LAN. With this, you can still have dependencies between DMZ hosts and
LAN hosts, and still be sure that checks are done in a DMZ-only poller.

7.5.9 Different types of Reactionners: reactionner_tag

• Use cases

Like for the pollers, reactionners can also have ‘tags’. So you can tag your host/service or commands with “reaction-
ner_tag”. If a notification or an event handler uses a “tagged” or “untagged” command in a untagged host/service,
it takes the reactionner_tag of this host/service. In a “untaged” host/service, it’s the command tag that is taken into
account.

The reactionners can be tagged with multiple reactionner_tags. If they are tagged, they will only take checks that are
tagged, not the untagged ones, unless they defined the tag “None”.

Like for the poller case, it’s mainly useful for DMZ/LAN or GNU/Linux/Windows cases.

7.5.10 Advanced architectures: Realms

• Realms in few words

• Realms are not poller_tags!

• Sub realms

• Example of realm usage

Shinken’s architecture allows the administrator to have a unique point of administration with numerous schedulers,
pollers, reactionners and brokers. Hosts are dispatched with their own services to schedulers and the satellites
(pollers/reactionners/brokers) get jobs from them. Everyone is happy.

Or almost everyone. Think about an administrator who has a distributed architecture around the world. With the
current Shinken architecture the administrator can put a couple scheduler/poller daemons in Europe and another set

7.5. Distributed Monitoring 149

Shinken Documentation, Release 2.4

in Asia, but he cannot “tag” hosts in Asia to be checked by the asian scheduler . Also trying to check an asian server
with an european scheduler can be very sub-optimal, read very sloooow. The hosts are dispatched to all schedulers
and satellites so the administrator cannot be sure that asian hosts will be checked by the asian monitoring servers.

In the normal Shinken Architecture is useful for load balancing with high availability, for single site.

Shinken provides a way to manage different geographic or organizational sites.

We will use a generic term for this site management, Realms.

Realms in few words

A realm is a pool of resources (scheduler, poller, reactionner and broker) that hosts or hostgroups can be attached to.
A host or hostgroup can be attached to only one realm. All “dependancies” or parents of this hosts must be in the same
realm. A realm can be tagged “default”’ and realm untagged hosts will be put into it. In a realm, pollers, reactionners
and brokers will only get jobs from schedulers of the same realm.

Realms are not poller_tags!

Make sure to undestand when to use realms and when to use poller_tags.

• realms are used to segregate schedulers

• poller_tags are used to segregate pollers

For some cases poller_tag functionality could also be done using Realms. The question you need to ask yourself: Is a
poller_tag “enough”, or do you need to fully segregate a the scheduler level and use Realms. In realms, schedulers do
not communicate with schedulers from other Realms.

If you just need a poller in a DMZ network, use poller_tag.

If you need a scheduler/poller in a customer LAN, use realms.

Sub realms

A realm can contain another realm. It does not change anything for schedulers: they are only responsible for hosts of
their realm not the ones of the sub realms. The realm tree is useful for satellites like reactionners or brokers: they can
get jobs from the schedulers of their realm, but also from schedulers of sub realms. Pollers can also get jobs from sub
realms, but it’s less useful so it’s disabled by default. Warning: having more than one broker in a scheduler is not a
good idea. The jobs for brokers can be taken by only one broker. For the Arbiter it does not change a thing: there is
still only one Arbiter and one configuration whatever realms you have.

Example of realm usage

Let’s take a look at two distributed environnements. In the first case the administrator wants totally distinct daemons.
In the second one he just wants the schedulers/pollers to be distincts, but still have one place to send notifications
(reactionners) and one place for database export (broker).

Distincts realms :

150 Chapter 7. Advanced Topics

Shinken Documentation, Release 2.4

More common usage, the global realm with reactionner/broker, and sub realms with schedulers/pollers :

Satellites can be used for their realm or sub realms too. It’s just a parameter in the configuration of the element.

7.5. Distributed Monitoring 151

Shinken Documentation, Release 2.4

7.6 Redundant and Failover Network Monitoring

7.6.1 Introduction

This topic is managed in the distributed section because it’s a part of the Shinken architecture.

7.7 Detection and Handling of State Flapping

7.7.1 Introduction

Shinken supports optional detection of hosts and services that are “flapping”. Flapping occurs when a service or host
changes state too frequently, resulting in a storm of problem and recovery notifications. Flapping can be indicative of
configuration problems (i.e. thresholds set too low), troublesome services, or real network problems.

7.7.2 How Flap Detection Works

Before I get into this, let me say that flapping detection has been a little difficult to implement. How exactly does one
determine what “too frequently” means in regards to state changes for a particular host or service? When I first started
thinking about implementing flap detection I tried to find some information on how flapping could/should be detected.
I couldn’t find any information about what others were using (where they using any?), so I decided to settle with what
seemed to me to be a reasonable solution...

Whenever Shinken checks the status of a host or service, it will check to see if it has started or stopped flapping. It
does this by.

• Storing the results of the last 21 checks of the host or service

• Analyzing the historical check results and determine where state changes/transitions occur

• Using the state transitions to determine a percent state change value (a measure of change) for the host or service

• Comparing the percent state change value against low and high flapping thresholds

A host or service is determined to have started flapping when its percent state change first exceeds a high flapping
threshold.

A host or service is determined to have stopped flapping when its percent state goes below a low flapping threshold
(assuming that is was previously flapping).

7.7.3 Example

Let’s describe in more detail how flap detection works with services...

The image below shows a chronological history of service states from the most recent 21 service checks. OK states
are shown in green, WARNING states in yellow, CRITICAL states in red, and UNKNOWN states in orange.

152 Chapter 7. Advanced Topics

Shinken Documentation, Release 2.4

The historical service check results are examined to determine where state changes/transitions occur. State changes
occur when an archived state is different from the archived state that immediately precedes it chronologically. Since
we keep the results of the last 21 service checks in the array, there is a possibility of having at most 20 state changes.
The 20 value can be changed in the main configuration file, see flap_history. In this example there are 7 state changes,
indicated by blue arrows in the image above.

The flap detection logic uses the state changes to determine an overall percent state change for the service. This is a
measure of volatility/change for the service. Services that never change state will have a 0% state change value, while
services that change state each time they’re checked will have 100% state change. Most services will have a percent
state change somewhere in between.

When calculating the percent state change for the service, the flap detection algorithm will give more weight to new
state changes compare to older ones. Specifically, the flap detection routines are currently designed to make the newest
possible state change carry 50% more weight than the oldest possible state change. The image below shows how recent
state changes are given more weight than older state changes when calculating the overall or total percent state change
for a particular service.

Using the images above, lets do a calculation of percent state change for the service. You will notice that there are a
total of 7 state changes (at t3, t4, t5, t9, t12, t16, and t19). Without any weighting of the state changes over time, this
would give us a total state change of 35%:

(7 observed state changes / possible 20 state changes) * 100 = 35 %

Since the flap detection logic will give newer state changes a higher rate than older state changes, the actual calculated
percent state change will be slightly less than 35% in this example. Let’s say that the weighted percent of state change
turned out to be 31%...

The calculated percent state change for the service (31%) will then be compared against flapping thresholds to see

7.7. Detection and Handling of State Flapping 153

Shinken Documentation, Release 2.4

what should happen:

• If the service was not previously flapping and 31% is equal to or greater than the high flap threshold, Shinken
considers the service to have just started flapping.

• If the service was previously flapping and 31% is less than the low flap threshold, Shinken considers the service
to have just stopped flapping.

If neither of those two conditions are met, the flap detection logic won’t do anything else with the service, since it is
either not currently flapping or it is still flapping.

7.7.4 Flap Detection for Services

Shinken checks to see if a service is flapping whenever the service is checked (either actively or passively).

The flap detection logic for services works as described in the example above.

7.7.5 Flap Detection for Hosts

Host flap detection works in a similar manner to service flap detection, with one important difference: Shinken will
attempt to check to see if a host is flapping whenever:

• The host is checked (actively or passively)

• Sometimes when a service associated with that host is checked. More specifically, when at least x amount of
time has passed since the flap detection was last performed, where x is equal to the average check interval of all
services associated with the host.

Why is this done? With services we know that the minimum amount of time between consecutive flap detection
routines is going to be equal to the service check interval. However, you might not be monitoring hosts on a regular
basis, so there might not be a host check interval that can be used in the flap detection logic. Also, it makes sense that
checking a service should count towards the detection of host flapping. Services are attributes of or things associated
with host after all... At any rate, that’s the best method I could come up with for determining how often flap detection
could be performed on a host, so there you have it.

7.7.6 Flap Detection Thresholds

Shinken uses several variables to determine the percent state change thresholds is uses for flap detection. For both hosts
and services, there are global high and low thresholds and host- or service-specific thresholds that you can configure.
Shinken will use the global thresholds for flap detection if you to not specify host- or service- specific thresholds.

The table below shows the global and host- or service-specific variables that control the various thresholds used in flap
detection.

Object Type Global Variables Object-Specific Variables
Host low_host_flap_threshold high_host_flap_threshold low_flap_threshold

high_flap_threshold
Service low_service_flap_threshold

high_service_flap_threshold
low_flap_threshold
high_flap_threshold

7.7.7 States Used For Flap Detection

Normally Shinken will track the results of the last 21 checks of a host or service, regardless of the check result
(host/service state), for use in the flap detection logic.

154 Chapter 7. Advanced Topics

Shinken Documentation, Release 2.4

You can exclude certain host or service states from use in flap detection logic by using the “flap_detection_options”
directive in your host or service definitions. This directive allows you to specify what host or service states (i.e. “UP,
“DOWN”, “OK, “CRITICAL”) you want to use for flap detection. If you don’t use this directive, all host or service
states are used in flap detection.

7.7.8 Flap Handling

When a service or host is first detected as flapping, Shinken will:

• Log a message indicating that the service or host is flapping.

• Add a non-persistent comment to the host or service indicating that it is flapping.

• Send a “flapping start” notification for the host or service to appropriate contacts.

• Suppress other notifications for the service or host (this is one of the filters in the notification logic).

When a service or host stops flapping, Shinken will:

• Log a message indicating that the service or host has stopped flapping.

• Delete the comment that was originally added to the service or host when it started flapping.

• Send a “flapping stop” notification for the host or service to appropriate contacts.

• Remove the block on notifications for the service or host (notifications will still be bound to the normal notifi-
cation logic).

7.7.9 Enabling Flap Detection

In order to enable the flap detection features in Shinken, you’ll need to:

• Set enable_flap_detection directive is set to 1.

• Set the “flap_detection_enabled” directive in your host and service definitions is set to 1.

If you want to disable flap detection on a global basis, set the enable_flap_detection directive to 0.

If you would like to disable flap detection for just a few hosts or services, use the “flap_detection_enabled” directive
in the host and/or service definitions to do so.

7.8 Notification Escalations

7.8.1 Introduction

Shinken supports optional escalation of contact notifications for hosts and services. Escalation of host and service noti-
fications is accomplished by defining host escalations and service escalations in your Object Configuration Overview.

7.8. Notification Escalations 155

Shinken Documentation, Release 2.4

The examples I provide below all make use of service escalation definitions, but host escalations work the same way.
Except, of course, that they’re for hosts instead of services. :-)

7.8.2 When Are Notifications Escalated?

Notifications are escalated if and only if one or more escalation definitions matches the current notification that is
being sent out. If a host or service notification does not have any valid escalation definitions that applies to it, the
contact group(s) specified in either the host group or service definition will be used for the notification. Look at the
example below:

define serviceescalation{
host_name webserver
service_description HTTP
first_notification 3
last_notification 5
notification_interval 90
contact_groups nt-admins,managers

}

define serviceescalation{
host_name webserver
service_description HTTP
first_notification 6
last_notification 10
notification_interval 60
contact_groups nt-admins,managers,everyone

}

Notice that there are “holes” in the notification escalation definitions. In particular, notifications 1 and 2 are not
handled by the escalations, nor are any notifications beyond 10. For the first and second notification, as well as all
notifications beyond the tenth one, the default contact groups specified in the service definition are used. For all the
examples I’ll be using, I’ll be assuming that the default contact groups for the service definition is called nt-admins.

7.8.3 Contact Groups

When defining notification escalations, it is important to keep in mind that any contact groups that were members of
“lower” escalations (i.e. those with lower notification number ranges) should also be included in “higher” escalation
definitions. This should be done to ensure that anyone who gets notified of a problem continues to get notified as the
problem is escalated. Example:

define serviceescalation{
host_name webserver
service_description HTTP
first_notification 3
last_notification 5
notification_interval 90
contact_groups nt-admins,managers

}

define serviceescalation{
host_name webserver
service_description HTTP
first_notification 6
last_notification 0
notification_interval 60

156 Chapter 7. Advanced Topics

Shinken Documentation, Release 2.4

contact_groups nt-admins,managers,everyone
}

The first (or “lowest”) escalation level includes both the nt-admins and managers contact groups. The last (or “high-
est”) escalation level includes the nt-admins, managers, and everyone contact groups. Notice that the nt-admins
contact group is included in both escalation definitions. This is done so that they continue to get paged if there are
still problems after the first two service notifications are sent out. The managers contact group first appears in the
“lower” escalation definition - they are first notified when the third problem notification gets sent out. We want the
managers group to continue to be notified if the problem continues past five notifications, so they are also included in
the “higher” escalation definition.

7.8.4 Overlapping Escalation Ranges

Notification escalation definitions can have notification ranges that overlap. Take the following example:

define serviceescalation{
host_name webserver
service_description HTTP
first_notification 3
last_notification 5
notification_interval 20
contact_groups nt-admins,managers

}

define serviceescalation{
host_name webserver
service_description HTTP
first_notification 4
last_notification 0
notification_interval 30
contact_groups on-call-support

}

In the example above:

• The nt-admins and managers contact groups get notified on the third notification

• All three contact groups get notified on the fourth and fifth notifications

• Only the on-call-support contact group gets notified on the sixth (or higher) notification

7.8.5 Recovery Notifications

Recovery notifications are slightly different than problem notifications when it comes to escalations. Take the follow-
ing example:

define serviceescalation{
host_name webserver
service_description HTTP
first_notification 3
last_notification 5
notification_interval 20
contact_groups nt-admins,managers

}

define serviceescalation{
host_name webserver

7.8. Notification Escalations 157

Shinken Documentation, Release 2.4

service_description HTTP
first_notification 4
last_notification 0
notification_interval 30
contact_groups on-call-support

}

If, after three problem notifications, a recovery notification is sent out for the service, who gets notified? The recovery
is actually the fourth notification that gets sent out. However, the escalation code is smart enough to realize that only
those people who were notified about the problem on the third notification should be notified about the recovery. In
this case, the nt-admins and managers contact groups would be notified of the recovery.

7.8.6 Notification Intervals

You can change the frequency at which escalated notifications are sent out for a particular host or service by using the
notification_interval option of the hostgroup or service escalation definition. Example:

define serviceescalation{
host_name webserver
service_description HTTP
first_notification 3
last_notification 5
notification_interval 45
contact_groups nt-admins,managers

}

define serviceescalation{
host_name webserver
service_description HTTP
first_notification 6
last_notification 0
notification_interval 60
contact_groups nt-admins,managers,everyone

}

In this example we see that the default notification interval for the services is 240 minutes (this is the value in the
service definition). When the service notification is escalated on the 3rd, 4th, and 5th notifications, an interval of 45
minutes will be used between notifications. On the 6th and subsequent notifications, the notification interval will be
60 minutes, as specified in the second escalation definition.

Since it is possible to have overlapping escalation definitions for a particular hostgroup or service, and the fact that
a host can be a member of multiple hostgroups, Shinken has to make a decision on what to do as far as the notifica-
tion interval is concerned when escalation definitions overlap. In any case where there are multiple valid escalation
definitions for a particular notification, Shinken will choose the smallest notification interval. Take the following
example:

define serviceescalation{
host_name webserver
service_description HTTP
first_notification 3
last_notification 5
notification_interval 45
contact_groups nt-admins,managers

}

define serviceescalation{
host_name webserver

158 Chapter 7. Advanced Topics

Shinken Documentation, Release 2.4

service_description HTTP
first_notification 4
last_notification 0
notification_interval 60
contact_groups nt-admins,managers,everyone

}

We see that the two escalation definitions overlap on the 4th and 5th notifications. For these notifications, Shinken will
use a notification interval of 45 minutes, since it is the smallest interval present in any valid escalation definitions for
those notifications.

One last note about notification intervals deals with intervals of 0. An interval of 0 means that Shinken should only
sent a notification out for the first valid notification during that escalation definition. All subsequent notifications for
the hostgroup or service will be suppressed. Take this example:

define serviceescalation{
host_name webserver
service_description HTTP
first_notification 3
last_notification 5
notification_interval 45
contact_groups nt-admins,managers

}

define serviceescalation{
host_name webserver
service_description HTTP
first_notification 3
last_notification 5
notification_interval 45
contact_groups nt-admins,managers

}

define serviceescalation{
host_name webserver
service_description HTTP
first_notification 7
last_notification 0
notification_interval 30
contact_groups nt-admins,managers

}

In the example above, the maximum number of problem notifications that could be sent out about the service would be
four. This is because the notification interval of 0 in the second escalation definition indicates that only one notification
should be sent out (starting with and including the 4th notification) and all subsequent notifications should be repressed.
Because of this, the third service escalation definition has no effect whatsoever, as there will never be more than four
notifications.

7.8.7 Escalations based on time

The escalations can also be based on time, instead of notification number. It’s very easy to setup and work like for the
old way but with time instead.

define escalation{
first_notification_time 60
last_notification_time 120

7.8. Notification Escalations 159

Shinken Documentation, Release 2.4

contact_groups nt-admins,managers
}

It will use the interval length for the value you set for first/last notification time. Here, it will escalate after 1 hour
problem, and stop at 2 hours. You cannot have in the same escalation time and number escalation rules. But of course
you can have escalations based on time and escalation based on notification number applied on hosts and services.

7.8.8 Escalations based on time short time

It’s also interesting to see that with escalation based on time, if the notification interval is longer than the next escalation
time, it’s this last value that will be taken into account.

Let take an example where your service got:

define service{
notification_interval 1440
escalations ToLevel2,ToLevel3

}

Then with the escalations objects:

define escalation {
escalation_name ToLevel2
first_notification_time 60
last_notification_time 120
contact_groups level2

}

define escalation {
escalation_name ToLevel3
first_notification_time 120
last_notification_time 0
contact_groups level3

}

Here let say you have a problem HARD on the service at t=0. It will notify the level1. The next notification should
be at t=1440 minutes, so tomorrow. It’s ok for classic services (too much notification is DANGEROUS!) but not for
escalated ones.

Here, at t=60 minutes, the escalation will raise, you will notify the level2 contact group, and then at t=120 minutes
you will notify the level3, and here one a day until they solve it!

So you can put large notification_interval and still have quick escalations times, it’s not a problem :)

7.8.9 Time Period Restrictions

Under normal circumstances, escalations can be used at any time that a notification could normally be sent out for the
host or service. This “notification time window” is determined by the “notification_period” directive in the host or
service definition.

You can optionally restrict escalations so that they are only used during specific time periods by using the “esca-
lation_period” directive in the host or service escalation definition. If you use the “escalation_period” directive to
specify a Time Period Definition during which the escalation can be used, the escalation will only be used during
that time. If you do not specify any “escalation_period” directive, the escalation can be used at any time within the
“notification time window” for the host or service.

160 Chapter 7. Advanced Topics

Shinken Documentation, Release 2.4

Escalated notifications are still subject to the normal time restrictions imposed by the “notification_period” directive
in a host or service definition, so the timeperiod you specify in an escalation definition should be a subset of that larger
“notification time window”.

7.8.10 State Restrictions

If you would like to restrict the escalation definition so that it is only used when the host or service is in a particular
state, you can use the “escalation_options” directive in the host or service escalation definition. If you do not use the
“escalation_options” directive, the escalation can be used when the host or service is in any state.

7.9 On-Call Rotations

7.9.1 Introduction

Admins often have to shoulder the burden of answering pagers, cell phone calls, etc. when they least desire them. No
one likes to be woken up at 4 am to fix a problem. But its often better to fix the problem in the middle of the night,
rather than face the wrath of an unhappy boss when you stroll in at 9 am the next morning.

For those lucky admins who have a team of gurus who can help share the responsibility of answering alerts, on-call
rotations are often setup. Multiple admins will often alternate taking notifications on weekends, weeknights, holidays,
etc.

I’ll show you how you can create timeperiod definitions in a way that can facilitate most on-call notification rotations.
These definitions won’t handle human issues that will inevitably crop up (admins calling in sick, swapping shifts, or
throwing their pagers into the river), but they will allow you to setup a basic structure that should work the majority of
the time.

7.9.2 Scenario 1: Holidays and Weekends

Two admins - John and Bob - are responsible for responding to Shinken alerts. John receives all notifications for week-
days (and weeknights) - except for holidays - and Bob gets handles notifications during the weekends and holidays.
Lucky Bob. Here’s how you can define this type of rotation using timeperiods...

First, define a timeperiod that contains time ranges for holidays:

7.9. On-Call Rotations 161

Shinken Documentation, Release 2.4

define timeperiod{
name holidays
timeperiod_name holidays
january 1 00:00-24:00 ; New Year's Day
2008-03-23 00:00-24:00 ; Easter (2008)
2009-04-12 00:00-24:00 ; Easter (2009)
monday -1 may 00:00-24:00 ; Memorial Day (Last Monday in May)
july 4 00:00-24:00 ; Independence Day
monday 1 september 00:00-24:00 ; Labor Day (1st Monday in September)
thursday 4 november 00:00-24:00 ; Thanksgiving (4th Thursday in November)
december 25 00:00-24:00 ; Christmas
december 31 17:00-24:00 ; New Year's Eve (5pm onwards)

}

Next, define a timeperiod for John’s on-call times that include weekdays and weeknights, but excludes the dates/times
defined in the holidays timeperiod above:

define timeperiod{
timeperiod_name john-oncall
monday 00:00-24:00
tuesday 00:00-24:00
wednesday 00:00-24:00
thursday 00:00-24:00
friday 00:00-24:00
exclude holidays ; Exclude holiday dates/times defined elsewhere

}

You can now reference this timeperiod in John’s contact definition:

define contact{
contact_name john
...
host_notification_period john-oncall
service_notification_period john-oncall

}

Define a new timeperiod for Bob’s on-call times that include weekends and the dates/times defined in the holidays
timeperiod above:

define timeperiod{
timeperiod_name bob-oncall
friday 00:00-24:00
saturday 00:00-24:00
use holidays ; Also include holiday date/times defined elsewhere

}

You can now reference this timeperiod in Bob’s contact definition:

define contact{
contact_name bob
...
host_notification_period bob-oncall
service_notification_period bob-oncall

}

162 Chapter 7. Advanced Topics

Shinken Documentation, Release 2.4

7.9.3 Scenario 2: Alternating Days

In this scenario John and Bob alternate handling alerts every other day - regardless of whether its a weekend, weekday,
or holiday.

Define a timeperiod for when John should receive notifications. Assuming today’s date is August 1st, 2007 and John
is handling notifications starting today, the definition would look like this:

define timeperiod{
timeperiod_name john-oncall
2007-08-01 / 2 00:00-24:00 ; Every two days, starting August 1st, 2007

}

Now define a timeperiod for when Bob should receive notifications. Bob gets notifications on the days that John
doesn’t, so his first on-call day starts tomorrow (August 2nd, 2007).

define timeperiod{
timeperiod_name bob-oncall
2007-08-02 / 2 00:00-24:00 ; Every two days, starting August 2nd, 2007

}

Now you need to reference these timeperiod definitions in the contact definitions for John and Bob:

define contact{
contact_name john
...
host_notification_period john-oncall
service_notification_period john-oncall

}
define contact{

contact_name bob
...
host_notification_period bob-oncall
service_notification_period bob-oncall

}

7.9.4 Scenario 3: Alternating Weeks

In this scenario John and Bob alternate handling alerts every other week. John handles alerts Sunday through Saturday
one week, and Bob handles alerts for the following seven days. This continues in perpetuity.

Define a timeperiod for when John should receive notifications. Assuming today’s date is Sunday, July 29th, 2007 and
John is handling notifications this week (starting today), the definition would look like this:

define timeperiod{
timeperiod_name john-oncall
2007-07-29 / 14 00:00-24:00 ; Every 14 days (two weeks), starting Sunday, July 29th, 2007
2007-07-30 / 14 00:00-24:00 ; Every other Monday starting July 30th, 2007
2007-07-31 / 14 00:00-24:00 ; Every other Tuesday starting July 31st, 2007
2007-08-01 / 14 00:00-24:00 ; Every other Wednesday starting August 1st, 2007
2007-08-02 / 14 00:00-24:00 ; Every other Thursday starting August 2nd, 2007
2007-08-03 / 14 00:00-24:00 ; Every other Friday starting August 3rd, 2007
2007-08-04 / 14 00:00-24:00 ; Every other Saturday starting August 4th, 2007

}

Now define a timeperiod for when Bob should receive notifications. Bob gets notifications on the weeks that John
doesn’t, so his first on-call day starts next Sunday (August 5th, 2007).

7.9. On-Call Rotations 163

Shinken Documentation, Release 2.4

define timeperiod{
timeperiod_name bob-oncall
2007-08-05 / 14 00:00-24:00 ; Every 14 days (two weeks), starting Sunday, August 5th, 2007
2007-08-06 / 14 00:00-24:00 ; Every other Monday starting August 6th, 2007
2007-08-07 / 14 00:00-24:00 ; Every other Tuesday starting August 7th, 2007
2007-08-08 / 14 00:00-24:00 ; Every other Wednesday starting August 8th, 2007
2007-08-09 / 14 00:00-24:00 ; Every other Thursday starting August 9th, 2007
2007-08-10 / 14 00:00-24:00 ; Every other Friday starting August 10th, 2007
2007-08-11 / 14 00:00-24:00 ; Every other Saturday starting August 11th, 2007

}

Now you need to reference these timeperiod definitions in the contact definitions for John and Bob:

define contact{
contact_name mjohn
...
host_notification_period john-oncall
service_notification_period john-oncall

}
define contact{

contact_name bob
...
host_notification_period bob-oncall
service_notification_period bob-oncall

}

7.9.5 Scenario 4: Vacation Days

In this scenarios, John handles notifications for all days except those he has off. He has several standing days off each
month, as well as some planned vacations. Bob handles notifications when John is on vacation or out of the office.

First, define a timeperiod that contains time ranges for John’s vacation days and days off:

define timeperiod{
name john-out-of-office
timeperiod_name john-out-of-office
day 15 00:00-24:00 ; 15th day of each month
day -1 00:00-24:00 ; Last day of each month (28th, 29th, 30th, or 31st)
day -2 00:00-24:00 ; 2nd to last day of each month (27th, 28th, 29th, or 30th)
january 2 00:00-24:00 ; January 2nd each year
june 1 - july 5 00:00-24:00 ; Yearly camping trip (June 1st - July 5th)
2007-11-01 - 2007-11-10 00:00-24:00 ; Vacation to the US Virgin Islands (November 1st-10th, 2007)

}

Next, define a timeperiod for John’s on-call times that excludes the dates/times defined in the timeperiod above:

define timeperiod{
timeperiod_name john-oncall
monday 00:00-24:00
tuesday 00:00-24:00
wednesday 00:00-24:00
thursday 00:00-24:00
friday 00:00-24:00
exclude john-out-of-office ; Exclude dates/times John is out

}

You can now reference this timeperiod in John’s contact definition:

164 Chapter 7. Advanced Topics

Shinken Documentation, Release 2.4

define contact{
contact_name john
...
host_notification_period john-oncall
service_notification_period john-oncall

}

Define a new timeperiod for Bob’s on-call times that include the dates/times that John is out of the office:

define timeperiod{
timeperod_name bob-oncall
use john-out-of-office ; Include holiday date/times that John is out

}

You can now reference this timeperiod in Bob’s contact definition:

define contact{
contact_name bob
...
host_notification_period bob-oncall
service_notification_period bob-oncall

}

7.9.6 Other Scenarios

There are a lot of other on-call notification rotation scenarios that you might have. The date exception directive in
timeperiod definitions is capable of handling most dates and date ranges that you might need to use, so check out the
different formats that you can use. If you make a mistake when creating timeperiod definitions, always err on the side
of giving someone else more on-call duty time. :-)

7.10 Monitoring Service and Host Clusters

7.10.1 Introduction

This “cluster” monitoring was managed by the check_cluster2 plugin in the Nagios times, now it’s fully integer to the
core, so you should read the new business rules that can be used for cluster monitoring :) Here.

7.11 Host and Service Dependencies

7.11.1 Introduction

Service and host dependencies are an advanced feature of Shinken that allow you to control the behavior of hosts and
services based on the status of one or more other hosts or services. I’ll explain how dependencies work, along with the
differences between host and service dependencies.

7.11.2 Service Dependencies Overview

There are a few things you should know about service dependencies:

• A service can be dependent on one or more other services

7.10. Monitoring Service and Host Clusters 165

Shinken Documentation, Release 2.4

• A service can be dependent on services which are not associated with the same host

• Service dependencies are not inherited (unless specifically configured to)

• Service dependencies can be used to cause service check execution and service notifications to be suppressed
under different circumstances (OK, WARNING, UNKNOWN, and/or CRITICAL states)

• Service dependencies might only be valid during specific timeperiods

7.11.3 Defining Service Dependencies

First, the basics. You create service dependencies by adding service dependency definitions in your object config
file(s). In each definition you specify the dependent service, the service you are depending on, and the criteria (if any)
that cause the execution and notification dependencies to fail (these are described later).

You can create several dependencies for a given service, but you must add a separate service dependency definition for
each dependency you create.

7.11.4 Example Service Dependencies

The image below shows an example logical layout of service notification and execution dependencies. Different
services are dependent on other services for notifications and check execution.

In this example, the dependency definitions for Service F on Host C would be defined as follows:

define servicedependency{
host_name Host B

166 Chapter 7. Advanced Topics

Shinken Documentation, Release 2.4

service_description Service D
dependent_host_name Host C
dependent_service_description Service F
execution_failure_criteria o
notification_failure_criteria w,u

}

define servicedependency{
host_name Host B
service_description Service E
dependent_host_name Host C
dependent_service_description Service F
execution_failure_criteria n
notification_failure_criteria w,u,c

}

define servicedependency{
host_name Host B
service_description Service C
dependent_host_name Host C
dependent_service_description Service F
execution_failure_criteria w
notification_failure_criteria c

}

The other dependency definitions shown in the image above would be defined as follows:

define servicedependency{
host_name Host A
service_description Service A
dependent_host_name Host B
dependent_service_description Service D
execution_failure_criteria u
notification_failure_criteria n

}

define servicedependency{
host_name Host A
service_description Service B
dependent_host_name Host B
dependent_service_description Service E
execution_failure_criteria w,u
notification_failure_criteria c

}

define servicedependency{
host_name Host B
service_description Service C
dependent_host_name Host B
dependent_service_description Service E
execution_failure_criteria n
notification_failure_criteria w,u,c

}

7.11. Host and Service Dependencies 167

Shinken Documentation, Release 2.4

7.11.5 How Service Dependencies Are Tested

Before Shinken executes a service check or sends notifications out for a service, it will check to see if the service
has any dependencies. If it doesn’t have any dependencies, the check is executed or the notification is sent out as it
normally would be. If the service does have one or more dependencies, Shinken will check each dependency entry as
follows:

• Shinken gets the current status of the service that is being depended upon.

• Shinken compares the current status of the service that is being depended upon against either the execution or
notification failure options in the dependency definition (whichever one is relevant at the time).

• If the current status of the service that is being depended upon matches one of the failure options, the dependency
is said to have failed and Shinken will break out of the dependency check loop.

• If the current state of the service that is being depended upon does not match any of the failure options for the
dependency entry, the dependency is said to have passed and Shinken will go on and check the next dependency
entry.

This cycle continues until either all dependencies for the service have been checked or until one dependency check
fails.

• One important thing to note is that by default, Shinken will use the most current hard state of the service(s) that
is/are being depended upon when it does the dependency checks. If you want Shinken to use the most current
state of the services (regardless of whether its a soft or hard state), enable the soft_state_dependencies option.

7.11.6 Execution Dependencies

Execution dependencies are used to restrict when active checks of a service can be performed. Passive checks are not
restricted by execution dependencies.

If all of the execution dependency tests for the service passed, Shinken will execute the check of the service as it
normally would. If even just one of the execution dependencies for a service fails, Shinken will temporarily prevent
the execution of checks for that (dependent) service. At some point in the future the execution dependency tests for
the service may all pass. If this happens, Shinken will start checking the service again as it normally would. More
information on the check scheduling logic can be found here.

In the example above, Service E would have failed execution dependencies if Service B is in a WARNING or UN-
KNOWN state. If this was the case, the service check would not be performed and the check would be scheduled for
(potential) execution at a later time.

7.11.7 Notification Dependencies

If all of the notification dependency tests for the service passed, Shinken will send notifications out for the service as it
normally would. If even just one of the notification dependencies for a service fails, Shinken will temporarily repress
notifications for that (dependent) service. At some point in the future the notification dependency tests for the service
may all pass. If this happens, Shinken will start sending out notifications again as it normally would for the service.
More information on the notification logic can be found here.

In the example above, Service F would have failed notification dependencies if Service C is in a CRITICAL state,
and/or Service D is in a WARNING or UNKNOWN state, and/or/ if Service E is in a WARNING, UNKNOWN, or
CRITICAL state. If this were the case, notifications for the service would not be sent out.

168 Chapter 7. Advanced Topics

Shinken Documentation, Release 2.4

7.11.8 Dependency Inheritance

As mentioned before, service dependencies are not inherited by default. In the example above you can see that Service
F is dependent on Service E. However, it does not automatically inherit Service E’s dependencies on Service B and
Service C. In order to make Service F dependent on Service C we had to add another service dependency definition.
There is no dependency definition for Service B, so Service F is not dependent on Service B.

If you do wish to make service dependencies inheritable, you must use the inherits_parent directive in the service
dependency definition. When this directive is enabled, it indicates that the dependency inherits dependencies of the
service that is being depended upon (also referred to as the master service). In other words, if the master service is
dependent upon other services and any one of those dependencies fail, this dependency will also fail.

In the example above, imagine that you want to add a new dependency for service F to make it dependent on service
A. You could create a new dependency definition that specified service F as the dependent service and service A as
being the master service (i.e. the service that is being dependend on). You could alternatively modify the dependency
definition for services D and F to look like this:

define servicedependency{
host_name Host B
service_description Service D
dependent_host_name Host C
dependent_service_description Service F
execution_failure_criteria o
notification_failure_criteria n
inherits_parent 1

}

Since the inherits_parent directive is enabled, the dependency between services A and D will be tested when the
dependency between services F and D are being tested.

Dependencies can have multiple levels of inheritance. If the dependency definition between A and D had its inher-
its_parent directive enable and service A was dependent on some other service (let’s call it service G), the service F
would be dependent on services D, A, and G (each with potentially different criteria).

7.11.9 Host Dependencies

As you’d probably expect, host dependencies work in a similar fashion to service dependencies. The difference is that
they’re for hosts, not services.

Do not confuse host dependencies with parent/child host relationships. You should be using parent/child host rela-
tionships (defined with the parents directive in host definitions) for most cases, rather than host dependencies. A
description of how parent/child host relationships work can be found in the documentation on network reachability.

Here are the basics about host dependencies:

• A host can be dependent on one or more other host

• Host dependencies are not inherited (unless specifically configured to)

• Host dependencies can be used to cause host check execution and host notifications to be suppressed under
different circumstances (UP, DOWN, and/or UNREACHABLE states)

• Host dependencies might only be valid during specific timeperiods

7.11.10 Example Host Dependencies

The image below shows an example of the logical layout of host notification dependencies. Different hosts are depen-
dent on other hosts for notifications.

7.11. Host and Service Dependencies 169

Shinken Documentation, Release 2.4

In the example above, the dependency definitions for Host C would be defined as follows:

define hostdependency{
host_name Host A
dependent_host_name Host C
notification_failure_criteria d

}

define hostdependency{
host_name Host B
dependent_host_name Host C
notification_failure_criteria d,u

}

As with service dependencies, host dependencies are not inherited. In the example image you can see that Host C does
not inherit the host dependencies of Host B. In order for Host C to be dependent on Host A, a new host dependency
definition must be defined.

Host notification dependencies work in a similar manner to service notification dependencies. If all of the notification
dependency tests for the host pass, Shinken will send notifications out for the host as it normally would. If even just
one of the notification dependencies for a host fails, Shinken will temporarily repress notifications for that (dependent)
host. At some point in the future the notification dependency tests for the host may all pass. If this happens, Shinken
will start sending out notifications again as it normally would for the host. More information on the notification logic
can be found here.

170 Chapter 7. Advanced Topics

Shinken Documentation, Release 2.4

7.12 State Stalking

7.12.1 Introduction

State “stalking” is a feature which is probably not going to used by most users. When enabled, it allows you to log
changes in the output service and host checks even if the state of the host or service does not change. When stalking
is enabled for a particular host or service, Shinken will watch that host or service very carefully and log any changes
it sees in the output of check results. As you’ll see, it can be very helpful to you in later analysis of the log files.

7.12.2 How Does It Work?

Under normal circumstances, the result of a host or service check is only logged if the host or service has changed
state since it was last checked. There are a few exceptions to this, but for the most part, that’s the rule.

If you enable stalking for one or more states of a particular host or service, Shinken will log the results of the host
or service check if the output from the check differs from the output from the previous check. Take the following
example of eight consecutive checks of a service:

Service Check #: Service State: Service Check Out-
put:

Logged Normally Logged With Stalking

x OK RAID array optimal • •

x+1 OK RAID array optimal • •

x+2 WARNING RAID array degraded
(1 drive bad, 1 hot
spare rebuilding)

x+3 CRITICAL RAID array degraded
(2 drives bad, 1 host
spare online, 1 hot
spare rebuilding)

x+4 CRITICAL RAID array degraded
(3 drives bad, 2 hot
spares online)

•

x+5 CRITICAL RAID array failed •

x+6 CRITICAL RAID array failed • •

x+7 CRITICAL RAID array failed • •

Given this sequence of checks, you would normally only see two log entries for this catastrophe. The first one would
occur at service check x+2 when the service changed from an OK state to a WARNING state. The second log entry
would occur at service check x+3 when the service changed from a WARNING state to a CRITICAL state.

For whatever reason, you may like to have the complete history of this catastrophe in your log files. Perhaps to help
explain to your manager how quickly the situation got out of control, perhaps just to laugh at it over a couple of drinks
at the local pub...

7.12. State Stalking 171

Shinken Documentation, Release 2.4

Well, if you had enabled stalking of this service for CRITICAL states, you would have events at x+4 and x+5 logged
in addition to the events at x+2 and x+3. Why is this? With state stalking enabled, Shinken would have examined the
output from each service check to see if it differed from the output of the previous check. If the output differed and
the state of the service didn’t change between the two checks, the result of the newer service check would get logged.

A similar example of stalking might be on a service that checks your web server. If the check_http plugin first returns
a WARNING state because of a 404 error and on subsequent checks returns a WARNING state because of a particular
pattern not being found, you might want to know that. If you didn’t enable state stalking for WARNING states of the
service, only the first WARNING state event (the 404 error) would be logged and you wouldn’t have any idea (looking
back in the archived logs) that future WARNING states were not due to a 404, but rather some text pattern that could
not be found in the returned web page.

7.12.3 Should I Enable Stalking?

First, you must decide if you have a real need to analyze archived log data to find the exact cause of a problem. You
may decide you need this feature for some hosts or services, but not for all. You may also find that you only have a
need to enable stalking for some host or service states, rather than all of them. For example, you may decide to enable
stalking for WARNING and CRITICAL states of a service, but not for OK and UNKNOWN states.

The decision to to enable state stalking for a particular host or service will also depend on the plugin that you use to
check that host or service. If the plugin always returns the same text output for a particular state, there is no reason to
enable stalking for that state.

7.12.4 How Do I Enable Stalking?

You can enable state stalking for hosts and services by using the stalking_options directive in host and service defini-
tions.

7.12.5 How Does Stalking Differ From Volatile Services?

Volatile services are similar, but will cause notifications and event handlers to run. Stalking is purely for logging
purposes.

7.12.6 Caveats

You should be aware that there are some potential pitfalls with enabling stalking. These all relate to the reporting
functions found in various CGIs (histogram, alert summary, etc.). Because state stalking will cause additional alert
entries to be logged, the data produced by the reports will show evidence of inflated numbers of alerts.

As a general rule, I would suggest that you not enable stalking for hosts and services without thinking things through.
Still, it’s there if you need and want it.

7.13 Performance Data

7.13.1 Introduction

Shinken is designed to allow plugins to return optional performance data in addition to normal status data, as well as
allow you to pass that performance data to external applications for processing. A description of the different types of
performance data, as well as information on how to go about processing that data is described below...

172 Chapter 7. Advanced Topics

Shinken Documentation, Release 2.4

7.13.2 Types of Performance Data

There are two basic categories of performance data that can be obtained from Shinken:

• Check performance data

• Plugin performance data

Check performance data is internal data that relates to the actual execution of a host or service check. This might
include things like service check latency (i.e. how “late” was the service check from its scheduled execution time)
and the number of seconds a host or service check took to execute. This type of performance data is available for all
checks that are performed. The $HOSTEXECUTIONTIME$ and $SERVICEEXECUTIONTIME$ macros can be used
to determine the number of seconds a host or service check was running and the $HOSTLATENCY$ and $SERVICE-
LATENCY$ macros can be used to determine how “late” a regularly-scheduled host or service check was.

Plugin performance data is external data specific to the plugin used to perform the host or service check. Plugin-
specific data can include things like percent packet loss, free disk space, processor load, number of current users, etc. -
basically any type of metric that the plugin is measuring when it executes. Plugin-specific performance data is optional
and may not be supported by all plugins. Plugin-specific performance data (if available) can be obtained by using the
$HOSTPERFDATA$ and $SERVICEPERFDATA$ macros. Read on for more information on how plugins can return
performance data to Shinken for inclusion in the $HOSTPERFDATA$ and $SERVICEPERFDATA$ macros.

7.13.3 Plugin Performance Data

At a minimum, Shinken plugins must return a single line of human-readable text that indicates the status of some type
of measurable data. For example, the check_ping plugin might return a line of text like the following:

PING ok - Packet loss = 0%, RTA = 0.80 ms

With this simple type of output, the entire line of text is available in the $HOSTOUTPUT$ or $SERVICEOUTPUT$
macros (depending on whether this plugin was used as a host check or service check).

Plugins can return optional performance data in their output by sending the normal, human-readable text string that
they usually would, followed by a pipe character (|), and then a string containing one or more performance data metrics.
Let’s take the check_ping plugin as an example and assume that it has been enhanced to return percent packet loss
and average round trip time as performance data metrics. Sample output from the plugin might look like this:

PING ok - Packet loss = 0%, RTA = 0.80 ms | percent_packet_loss=0, rta=0.80

When Shinken sees this plugin output format it will split the output into two parts:

• Everything before the pipe character is considered to be the normal” plugin output and will be stored in either
the $HOSTOUTPUT$ or $SERVICEOUTPUT$ macro

• Everything after the pipe character is considered to be the plugin-specific performance data and will be stored
in the $HOSTPERFDATA$ or $SERVICEPERFDATA$ macro

In the example above, the $HOSTOUTPUT$ or $SERVICEOUTPUT$ macro would contain “PING ok - Packet loss =
0%, RTA = 0.80 ms” (without quotes) and the $HOSTPERFDATA$ or $SERVICEPERFDATA$ macro would contain
“percent_packet_loss=0, rta=0.80” (without quotes).

Multiple lines of performace data (as well as normal text output) can be obtained from plugins, as described in the
plugin API documentation.

The Shinken daemon doesn’t directly process plugin performance data, so it doesn’t really care what the performance
data looks like. There aren’t really any inherent limitations on the format or content of the performance data. However,
if you are using an external addon to process the performance data (i.e. PerfParse), the addon may be expecting that
the plugin returns performance data in a specific format. Check the documentation that comes with the addon for more
information.

7.13. Performance Data 173

Shinken Documentation, Release 2.4

7.13.4 Processing Performance Data

If you want to process the performance data that is available from Shinken and the plugins, you’ll need to do the
following:

• Enable the process_performance_data option.

• Configure Shinken so that performance data is either written to files and/or processed by executing commands.

Read on for information on how to process performance data by writing to files or executing commands.

7.13.5 Processing Performance Data Using Commands

The most flexible way to process performance data is by having Shinken execute commands (that you specify) to pro-
cess or redirect the data for later processing by external applications. The commands that Shinken executes to process
host and service performance data are determined by the host_perfdata_command and service_perfdata_command
options, respectively.

An example command definition that redirects service check performance data to a text file for later processing by
another application is shown below:

define command{
command_name store-service-perfdata
command_line /bin/echo -e "$LASTSERVICECHECK$\t$HOSTNAME$\t$SERVICEDESC$\t$SERVICESTATE$\t$SERVICEATTEMPT$\t$SERVICESTATETYPE$\t$SERVICEEXECUTIONTIME$\t$SERVICELATENCY$\t$SERVICEOUTPUT$\t$SERVICEPERFDATA$" >> /var/lib/shinken/service-perfdata.dat

}

This method, while flexible, comes with a relatively high CPU overhead. If you’re processing performance data for
a large number of hosts and services, you’ll probably want Shinken to write performance data to files instead. This
method is described in the next section.

7.13.6 Writing Performance Data To Files

You can have Shinken write all host and service performance data directly to text files using the host_perfdata_file
and service_perfdata_file options. The format in which host and service performance data is written to those files is
determined by the host_perfdata_file_template and service_perfdata_file_template options.

An example file format template for service performance data might look like this:

service_perfdata_file_template=[SERVICEPERFDATA]\t$TIMET$\t$HOSTNAME$\t$SERVICEDESC$\t$SERVICEEXECUTIONTIME$\t$SERVICELATENCY$\t$SERVICEOUTPUT$\t$SERVICEPERFDATA$

By default, the text files will be opened in “append” mode. If you need to change the modes to “write” or “non-blocking
read/write” (useful when writing to pipes), you can use the host_perfdata_file_mode and service_perfdata_file_mode
options.

Additionally, you can have Shinken periodically execute commands to periocially process the per-
formance data files (e.g. rotate them) using the host_perfdata_file_processing_command and ser-
vice_perfdata_file_processing_command options. The interval at which these commands are executed are governed
by the host_perfdata_file_processing_interval and service_perfdata_file_processing_interval options, respectively.

174 Chapter 7. Advanced Topics

Shinken Documentation, Release 2.4

7.14 Scheduled Downtime

7.14.1 Introduction

Shinken allows you to schedule periods of planned downtime for hosts and service that you’re monitoring. This is
useful in the event that you actually know you’re going to be taking a server down for an upgrade, etc.

7.14.2 Scheduling Downtime

You can schedule downtime with your favorite UI or as an external command in cli.

Once you schedule downtime for a host or service, Shinken will add a comment to that host/service indicating that it
is scheduled for downtime during the period of time you indicated. When that period of downtime passes, Shinken
will automatically delete the comment that it added. Nice, huh?

7.14.3 Fixed vs. Flexible Downtime

When you schedule downtime for a host or service through the web interface you’ll be asked if the downtime is fixed
or flexible. Here’s an explanation of how “fixed” and “flexible” downtime differs:

“Fixed” downtime starts and stops at the exact start and end times that you specify when you schedule it. Okay, that
was easy enough...

“Flexible” downtime is intended for times when you know that a host or service is going to be down for X minutes
(or hours), but you don’t know exactly when that’ll start. When you schedule flexible downtime, Shinken will start
the scheduled downtime sometime between the start and end times you specified. The downtime will last for as long
as the duration you specified when you scheduled the downtime. This assumes that the host or service for which
you scheduled flexible downtime either goes down (or becomes unreachable) or goes into a non-OK state sometime
between the start and end times you specified. The time at which a host or service transitions to a problem state
determines the time at which Shinken actually starts the downtime. The downtime will then last for the duration you
specified, even if the host or service recovers before the downtime expires. This is done for a very good reason. As
we all know, you might think you’ve got a problem fixed, but then have to restart a server ten times before it actually
works right. Smart, eh?

7.14. Scheduled Downtime 175

Shinken Documentation, Release 2.4

7.14.4 Triggered Downtime

When scheduling host or service downtime you have the option of making it “triggered” downtime. What is triggered
downtime, you ask? With triggered downtime the start of the downtime is triggered by the start of some other scheduled
host or service downtime. This is extremely useful if you’re scheduling downtime for a large number or hosts or
services and the start time of the downtime period depends on the start time of another downtime entry. For instance,
if you schedule flexible downtime for a particular host (because its going down for maintenance), you might want to
schedule triggered downtime for all of that hosts’s “children”.

7.14.5 How Scheduled Downtime Affects Notifications

When a host or service is in a period of scheduled downtime, Shinken will not allow normal notifications to be sent
out for the host or service. However, a “DOWNTIMESTART” notification will get sent out for the host or service,
which will serve to put any admins on notice that they won’t receive upcoming problem alerts.

When the scheduled downtime is over, Shinken will allow normal notifications to be sent out for the host or service
again. A “DOWNTIMEEND” notification will get sent out notifying admins that the scheduled downtime is over, and
they will start receiving normal alerts again.

If the scheduled downtime is cancelled prematurely (before it expires), a “DOWNTIMECANCELLED” notification
will get sent out to the appropriate admins.

7.14.6 Overlapping Scheduled Downtime

I like to refer to this as the “Oh crap, its not working” syndrome. You know what I’m talking about. You take a server
down to perform a “routine” hardware upgrade, only to later realize that the OS drivers aren’t working, the RAID
array blew up, or the drive imaging failed and left your original disks useless to the world. Moral of the story is that
any routine work on a server is quite likely to take three or four times as long as you had originally planned...

Let’s take the following scenario:

• You schedule downtime for host A from 7:30pm-9:30pm on a Monday

• You bring the server down about 7:45pm Monday evening to start a hard drive upgrade

• After wasting an hour and a half battling with SCSI errors and driver incompatibilities, you finally get the
machine to boot up

• At 9:15 you realize that one of your partitions is either hosed or doesn’t seem to exist anywhere on the drive

• Knowing you’re in for a long night, you go back and schedule additional downtime for host A from 9:20pm
Monday evening to 1:30am Tuesday Morning.

If you schedule overlapping periods of downtime for a host or service (in this case the periods were 7:40pm-9:30pm
and 9:20pm-1:30am), Shinken will wait until the last period of scheduled downtime is over before it allows notifica-
tions to be sent out for that host or service. In this example notifications would be suppressed for host A until 1:30am
Tuesday morning.

7.15 Adaptive Monitoring

7.15.1 Introduction

Shinken allows you to change certain commands and host and service check attributes during runtime. I’ll refer to this
feature as “adaptive monitoring”. Please note that the adaptive monitoring features found in Shinken will probably not
be of much use to 99% of users, but they do allow you to do some neat things.

176 Chapter 7. Advanced Topics

Shinken Documentation, Release 2.4

7.15.2 What Can Be Changed?

The following host/service check attributes can be changed during runtime:

• Check command (and command arguments)

• Check interval

• Max check attempts

• Check timeperiod

• Event handler command (and command arguments)

The following global attributes can be changed during runtime:

• Global host event handler command (and command arguments)

• Global service event handler command (and command arguments)

7.15.3 External Commands For Adaptive Monitoring

In order to change global or host- or service-specific attributes during runtime, you must submit the appropriate
external command to Shinken. The table below lists the different attributes that may be changed during runtime, along
with the external command to accomplish the job.

A full listing of external commands that can be used for adaptive monitoring (along with examples of how to use them)
can be found online at the following URL: http://www.nagios.org/developerinfo/externalcommands/

• When changing check commands, check timeperiods, or event handler commands, it is important to note that
the new values for these options must have been defined before shinken was started. Any request to change a
command or timeperiod to one which had not been defined when it was started is ignored.

• You can specify command arguments along with the actual command name - just separate individual arguments
from the command name (and from each other) using bang (!) characters. More information on how arguments
in command definitions are processed during runtime can be found in the documentation on macros.

7.16 Predictive Dependency Checks

Note: The predictive dependency check functionality is not managed from now in Shinken.

7.16.1 Introduction

Host and service dependencies can be defined to allow you greater control over when checks are executed and when
notifications are sent out. As dependencies are used to control basic aspects of the monitoring process, it is crucial to
ensure that status information used in the dependency logic is as up to date as possible.

Shinken allows you to enable predictive dependency checks for hosts and services to ensure that the dependency
logic will have the most up-to-date status information when it comes to making decisions about whether to send out
notifications or allow active checks of a host or service.

7.16. Predictive Dependency Checks 177

http://www.nagios.org/developerinfo/externalcommands/

Shinken Documentation, Release 2.4

7.16.2 How Do Predictive Checks Work?

The image below shows a basic diagram of hosts that are being monitored by Shinken, along with their parent/child
relationships and dependencies.

The Switch2 host in this example has just changed state from an UP state to a problem state. Shinken needs to
determine whether the host is DOWN or UNREACHABLE, so it will launch parallel checks of Switch2‘s immediate
parents (Firewall1) and children (Comp1, Comp2, and Switch3). This is a normal function of the host reachability
logic.

You will also notice that Switch2 is depending on Monitor1 and File1 for either notifications or check execution
(which one is unimportant in this example). If predictive host dependency checks are enabled, Shinken will launch
parallel checks of Monitor1 and File1 at the same time it launches checks of Switch2‘s immediate parents and children.
Shinken does this because it knows that it will have to test the dependency logic in the near future (e.g. for purposes
of notification) and it wants to make sure it has the most current status information for the hosts that take part in the
dependency.

That’s how predictive dependency checks work. Simple, eh?

Predictive service dependency checks work in a similar manner to what is described above. Except, of course, they
deal with services instead of hosts.

7.16.3 Enabling Predictive Checks

Predictive dependency checks involve rather little overhead, so I would recommend that you enable them. In most
cases, the benefits of having accurate information for the dependency logic outweighs the extra overhead imposed by
these checks.

Enabling predictive dependency checks is easy:

• Predictive host dependency checks are controlled by the “enable_predictive_host_dependency_checks” option.

178 Chapter 7. Advanced Topics

Shinken Documentation, Release 2.4

• Predictive service dependency checks are controlled by the “enable_predictive_service_dependency_checks”
option.

7.16.4 Cached Checks

Predictive dependency checks are on-demand checks and are therefore subject to the rules of cached checks. Cached
checks can provide you with performance improvements by allowing Shinken to forgo running an actual host or service
check if it can use a relatively recent check result instead. More information on cached checks can be found here.

7.17 Cached Checks

7.17.1 Introduction

The performance of Shinken’s monitoring logic can be significantly improved by implementing the use of cached
checks. Cached checks allow Shinken to forgo executing a host or service check command if it determines a relatively
recent check result will do instead.

7.17.2 For On-Demand Checks Only

Regularly scheduled host and service checks will not see a performance improvement with use of cached checks.
Cached checks are only useful for improving the performance of on-demand host and service checks. Scheduled
checks help to ensure that host and service states are updated regularly, which may result in a greater possibility their
results can be used as cached checks in the future.

For reference, on-demand host checks occur...

• When a service associated with the host changes state.

• As needed as part of the host reachability logic.

• As needed for host dependency checks.

And on-demand service checks occur...

7.17. Cached Checks 179

Shinken Documentation, Release 2.4

• As needed for service dependency checks.

Unless you make use of service dependencies, Shinken will not be able to use cached check results to improve the
performance of service checks. Don’t worry about that - its normal. Cached host checks are where the big performance
improvements lie, and everyone should see a benefit there.

7.17.3 How Caching Works

When Shinken needs to perform an on-demand host or service check, it will make a determination as to whether it can
used a cached check result or if it needs to perform an actual check by executing a plugin. It does this by checking to
see if the last check of the host or service occurred within the last X seconds, where X is the cached host or service
check horizon.

If the last check was performed within the timeframe specified by the cached check horizon variable, Shinken will use
the result of the last host or service check and will not execute a new check. If the host or service has not yet been
checked, or if the last check falls outside of the cached check horizon timeframe, Shinken will execute a new host or
service check by running a plugin.

7.17.4 What This Really Means

Shinken performs on-demand checks because it need to know the current state of a host or service at that exact moment
in time. Utilizing cached checks allows you to make Shinken think that recent check results are “good enough” for
determining the current state of hosts, and that it doesn’t need to go out and actually re-check the status of that host or
service.

The cached check horizon tells Shinken how recent check results must be in order to reliably reflect the current state
of a host or service. For example, with a cached check horizon of 30 seconds, you are telling Shinken that if a host’s
state was checked sometime in the last 30 seconds, the result of that check should still be considered the current state
of the host.

The number of cached check results that Shinken can use versus the number of on-demand checks it has to actually
execute can be considered the cached check “hit” rate. By increasing the cached check horizon to equal the regular
check interval of a host, you could theoretically achieve a cache hit rate of 100%. In that case all on-demand checks
of that host would use cached check results. What a performance improvement! But is it really? Probably not.

180 Chapter 7. Advanced Topics

Shinken Documentation, Release 2.4

The reliability of cached check result information decreases over time. Higher cache hit rates require that previous
check results are considered “valid” for longer periods of time. Things can change quickly in any network scenario,
and there’s no guarantee that a server that was functioning properly 30 seconds ago isn’t on fire right now. There’s the
tradeoff - reliability versus speed. If you have a large cached check horizon, you risk having unreliable check result
values being used in the monitoring logic.

Shinken will eventually determine the correct state of all hosts and services, so even if cached check results prove to
unreliably represent their true value, it will only work with incorrect information for a short period of time. Even short
periods of unreliable status information can prove to be a nuisance for admins, as they may receive notifications about
problems which no longer exist.

There is no standard cached check horizon or cache hit rate that will be acceptable to every users. Some people will
want a short horizon timeframe and a low cache hit rate, while others will want a larger horizon timeframe and a larger
cache hit rate (with a low reliability rate). Some users may even want to disable cached checks altogether to obtain
a 100% reliability rate. Testing different horizon timeframes, and their effect on the reliability of status information,
is the only want that an individual user will find the “right” value for their situation. More information on this is
discussed below.

7.17.5 Configuration Variables

The following variables determine the timeframes in which a previous host or service check result may be used as a
cached host or service check result:

• The cached_host_check_horizon variable controls cached host checks.

• The cached_service_check_horizon variable controls cached service checks.

7.17.6 Optimizing Cache Effectiveness

In order to make the most effective use of cached checks, you should:

• Schedule regular checks of your hosts

• Use MRTG to graph statistics for 1) on-demand checks and 2) cached checks

• Adjust cached check horizon variables to fit your needs

You can schedule regular checks of your hosts by specifying a value greater than 0 for check_interval option in your
host definitions.

7.17. Cached Checks 181

Shinken Documentation, Release 2.4

A good way to determine the proper value for the cached check horizon options is to compare how many on-demand
checks Shinken has to actually run versus how may it can use cached values for. The nagiostats utility can produce
information on cached checks, which can then be graphed with MRTG. Example MRTG graphs that show cached vs.
actual on-demand checks are shown to the right.

The monitoring installation which produced the graphs above had:

• A total of 44 hosts, all of which were checked at regular intervals

• An average (regularly scheduled) host check interval of 5 minutes

• A cached_host_check_horizon of 15 seconds

The first MRTG graph shows how many regularly scheduled host checks compared to how many cached host checks
have occurred. In this example, an average of 53 host checks occur every five minutes. 9 of these (17%) are on-demand
checks.

The second MRTG graph shows how many cached host checks have occurred over time. In this example an average
of 2 cached host checks occurs every five minutes.

Remember, cached checks are only available for on-demand checks. Based on the 5 minute averages from the graphs,
we see that Nagios is able to used cached host check results every 2 out of 9 times an on-demand check has to be run.
That may not seem much, but these graphs represent a small monitoring environment. Consider that 2 out of 9 is 22%
and you can start to see how this could significantly help improve host check performance in large environments. That
percentage could be higher if the cached host check horizon variable value was increased, but that would reduce the
reliability of the cached host state information.

182 Chapter 7. Advanced Topics

Shinken Documentation, Release 2.4

Once you’ve had a few hours or days worth of MRTG graphs, you should see how many host and service checks
were done by executing plugins versus those that used cached check results. Use that information to adjust the cached
check horizon variables appropriately for your situation. Continue to monitor the MRTG graphs over time to see how
changing the horizon variables affected cached check statistics. Rinse and repeat as necessary.

7.18 Passive Host State Translation

7.18.1 Introduction

This Nagios option is no more useful in the Shinken architecture.

7.19 Service and Host Check Scheduling

7.19.1 The scheduling

The scheduling of Shinken is quite simple. The first scheduling take care of the max_service_check_spread and
max_host_check_spread so the time of the first schedule will be in the

start+max_*_check_spread*interval_length (60s in general)

if the check_timeperiod agree with it.

Note: Shinken do not take care about Nagios *_inter_check_delay_method : this is always ‘s’ (smart) because other
options are just useless for nearly everyone. And it also do not use the *_interleave_factor too.

Nagios make a average of service by host to make it’s dispatch of checks in the first check window. Shinken use a
random way of doing it : the check is between t=now and t=min(t from next timeperiod, max_*_check_spread), but
in a random way. So you will will have the better distribution of checks in this period, instead of the nagios one where
hosts with differents number of services can be agresively checks.

After this first scheduling, the time for the next check is just t_check+check_interval if the timepriod is agree for it (or
just the next time available in the timeperiod). In the future, a little random value (like few seconds) will be add for
such cases.

7.19.2 Aggressive Host Checking Option (Unused)

Format: use_aggressive_host_checking=<0/1>
Example: use_aggressive_host_checking=0

Nagios tries to be smart about how and when it checks the status of hosts. In general, disabling this option will allow
Nagios to make some smarter decisions and check hosts a bit faster. Enabling this option will increase the amount of
time required to check hosts, but may improve reliability a bit. Unless you have problems with Nagios not recognizing
that a host recovered, I would suggest not enabling this option.

• 0 = Don’t use aggressive host checking (default)

• 1 = Use aggressive host checking

7.18. Passive Host State Translation 183

Shinken Documentation, Release 2.4

7.20 Object Inheritance

7.20.1 Introduction

This documentation attempts to explain object inheritance and how it can be used in your object definitions.

If you are confused about how recursion and inheritance work after reading this, take a look at the sample object config
files provided in the Shinken distribution. If that still doesn’t help, have a look to the shinken resources for help.

7.20.2 Basics

There are three variables affecting recursion and inheritance that are present in all object definitions. They are indicated
in red as follows...

define someobjecttype{
object-specific variables ...
name template_name
use name_of_template_to_use
register [0/1]
}

The first variable is “name”. Its just a “template” name that can be referenced in other object definitions so they can
inherit the objects properties/variables. Template names must be unique amongst objects of the same type, so you
can’t have two or more host definitions that have “hosttemplate” as their template name.

The second variable is “use”. This is where you specify the name of the template object that you want to inherit
properties/variables from. The name you specify for this variable must be defined as another object’s template named
(using the name variable).

The third variable is “register”. This variable is used to indicate whether or not the object definition should be “reg-
istered” with Shinken. By default, all object definitions are registered. If you are using a partial object definition
as a template, you would want to prevent it from being registered (an example of this is provided later). Values are
as follows: 0 = do NOT register object definition, 1 = register object definition (this is the default). This variable is
NOT inherited; every (partial) object definition used as a template must explicitly set the “register” directive to be 0.
This prevents the need to override an inherited “register” directive with a value of 1 for every object that should be
registered.

7.20.3 Local Variables vs. Inherited Variables

One important thing to understand with inheritance is that “local” object variables always take precedence over vari-
ables defined in the template object. Take a look at the following example of two host definitions (not all required
variables have been supplied):

define host{
host_name bighost1
check_command check-host-alive
notification_options d,u,r
max_check_attempts 5
name hosttemplate1
}

define host{
host_name bighost2
max_check_attempts 3

184 Chapter 7. Advanced Topics

Shinken Documentation, Release 2.4

use hosttemplate1
}

You’ll note that the definition for host bighost1 has been defined as having hosttemplate1 as its template name. The
definition for host bighost2 is using the definition of bighost1 as its template object. Once Shinken processes this data,
the resulting definition of host bighost2 would be equivalent to this definition:

define host{
host_name bighost2
check_command check-host-alive
notification_options d,u,r
max_check_attempts 3
}

You can see that the “check_command” and “notification_options” variables were inherited from the template object
(where host bighost1 was defined). However, the host_name and max_check_attempts variables were not inherited
from the template object because they were defined locally. Remember, locally defined variables override variables
that would normally be inherited from a template object. That should be a fairly easy concept to understand.

If you would like local string variables to be appended to inherited string values, you can do so. Read more about how
to accomplish this below.

7.20.4 Inheritance Chaining

Objects can inherit properties/variables from multiple levels of template objects. Take the following example:

define host{
host_name bighost1
check_command check-host-alive
notification_options d,u,r
max_check_attempts 5
name hosttemplate1
}

define host{
host_name bighost2
max_check_attempts 3
use hosttemplate1
name hosttemplate2
}

define host{
host_name bighost3
use hosttemplate2
}

You’ll notice that the definition of host bighost3 inherits variables from the definition of host bighost2, which in turn
inherits variables from the definition of host bighost1. Once Shinken processes this configuration data, the resulting
host definitions are equivalent to the following:

define host{
host_name bighost1
check_command check-host-alive
notification_options d,u,r
max_check_attempts 5
}

define host{

7.20. Object Inheritance 185

Shinken Documentation, Release 2.4

host_name bighost2
check_command check-host-alive
notification_options d,u,r
max_check_attempts 3
}

define host{
host_name bighost3
check_command check-host-alive
notification_options d,u,r
max_check_attempts 3
}

There is no inherent limit on how “deep” inheritance can go, but you’ll probably want to limit yourself to at most a
few levels in order to maintain sanity.

7.20.5 Using Incomplete Object Definitions as Templates

It is possible to use incomplete object definitions as templates for use by other object definitions. By “incomplete”
definition, I mean that all required variables in the object have not been supplied in the object definition. It may sound
odd to use incomplete definitions as templates, but it is in fact recommended that you use them. Why? Well, they can
serve as a set of defaults for use in all other object definitions. Take the following example:

define host{
check_command check-host-alive
notification_options d,u,r
max_check_attempts 5
name generichosttemplate
register 0
}

define host{
host_name bighost1
address 192.168.1.3
use generichosthosttemplate
}

define host{
host_name bighost2
address 192.168.1.4
use generichosthosttemplate
}

Notice that the first host definition is incomplete because it is missing the required “host_name” variable. We don’t
need to supply a host name because we just want to use this definition as a generic host template. In order to prevent
this definition from being registered with Shinken as a normal host, we set the “register” variable to 0.

The definitions of hosts bighost1 and bighost2 inherit their values from the generic host definition. The only variable
we’ve chosed to override is the “address” variable. This means that both hosts will have the exact same properties,
except for their “host_name” and “address” variables. Once Shinken processes the config data in the example, the
resulting host definitions would be equivalent to specifying the following:

define host{
host_name bighost1
address 192.168.1.3
check_command check-host-alive
notification_options d,u,r

186 Chapter 7. Advanced Topics

Shinken Documentation, Release 2.4

max_check_attempts 5
}

define host{
host_name bighost2
address 192.168.1.4
check_command check-host-alive
notification_options d,u,r
max_check_attempts 5
}

At the very least, using a template definition for default variables will save you a lot of typing. It’ll also save you a lot
of headaches later if you want to change the default values of variables for a large number of hosts.

7.20.6 Custom Object Variables

Any custom object variables that you define in your host, service, or contact definition templates will be inherited just
like other standard variables. Take the following example:

define host{
_customvar1 somevalue ; <-- Custom host variable
_snmp_community public ; <-- Custom host variable
name generichosttemplate
register 0
}

define host{
host_name bighost1
address 192.168.1.3
use generichosthosttemplate
}

The host bighost1 will inherit the custom host variables “_customvar1” and “_snmp_community”, as well as their
respective values, from the generichosttemplate definition. The effective result is a definition for bighost1 that looks
like this:

define host{
host_name bighost1
address 192.168.1.3
_customvar1 somevalue
_snmp_community public
}

7.20.7 Cancelling Inheritance of String Values

In some cases you may not want your host, service, or contact definitions to inherit values of string variables from the
templates they reference. If this is the case, you can specify “null” (without quotes) as the value of the variable that
you do not want to inherit. Take the following example:

define host{
event_handler my-event-handler-command
name generichosttemplate
register 0
}

define host{

7.20. Object Inheritance 187

Shinken Documentation, Release 2.4

host_name bighost1
address 192.168.1.3
event_handler null
use generichosthosttemplate
}

In this case, the host bighost1 will not inherit the value of the “event_handler” variable that is defined in the generi-
chosttemplate. The resulting effective definition of bighost1 is the following:

define host{
host_name bighost1
address 192.168.1.3
}

7.20.8 Additive Inheritance of String Values

Shinken gives preference to local variables instead of values inherited from templates. In most cases local variable
values override those that are defined in templates. In some cases it makes sense to allow Shinken to use the values of
inherited and local variables together.

This “additive inheritance” can be accomplished by prepending the local variable value with a plus sign (+). This
features is only available for standard (non-custom) variables that contain string values. Take the following example:

define host{
hostgroups all-servers
name generichosttemplate
register 0
}

define host{
host_name linuxserver1
hostgroups +linux-servers,web-servers
use generichosthosttemplate
}

In this case, the host linuxserver1 will append the value of its local “hostgroups” variable to that from generichosttem-
plate. The resulting effective definition of linuxserver1 is the following:

define host{
host_name linuxserver1
hostgroups all-servers,linux-servers,web-servers
}

Important: If you use a field twice using several templates, the value of the field will be the first one found! In the
example above, fields values in all-servers won’t we be replaced. Be careful with overlaping field!

7.20.9 Implied Inheritance

Normally you have to either explicitly specify the value of a required variable in an object definition or inherit it from
a template. There are a few exceptions to this rule, where Shinken will assume that you want to use a value that instead
comes from a related object. For example, the values of some service variables will be copied from the host the service
is associated with if you don’t otherwise specify them.

The following table lists the object variables that will be implicitly inherited from related objects if you don’t explicitly
specify their value in your object definition or inherit them from a template.

188 Chapter 7. Advanced Topics

Shinken Documentation, Release 2.4

Object Type Object Variable Implied Source
Services contact_groups contact_groups in the associated host

definition
notifica-
tion_interval

notification_interval in the associated host
definition

notifica-
tion_period

notification_period in the associated host
definition

check_period check_period in the associated host definition
Host
Escalations

contact_groups contact_groups in the associated host
definition

notifica-
tion_interval

notification_interval in the associated host
definition

escala-
tion_period

notification_period in the associated host
definition

Service
Escalations

contact_groups contact_groups in the associated service
definition

notifica-
tion_interval

notification_interval in the associated service
definition

escala-
tion_period

notification_period in the associated service
definition

7.20.10 Implied/Additive Inheritance in Escalations

Service and host escalation definitions can make use of a special rule that combines the features of implied and additive
inheritance. If escalations 1) do not inherit the values of their “contact_groups” or “contacts” directives from another
escalation template and 2) their “contact_groups” or “contacts” directives begin with a plus sign (+), then the values of
their corresponding host or service definition’s “contact_groups” or “contacts” directives will be used in the additive
inheritance logic.

Confused? Here’s an example:

define host{
name linux-server
contact_groups linux-admins
...
}

define hostescalation{
host_name linux-server
contact_groups +management
...
}

This is a much simpler equivalent to:

define hostescalation{
host_name linux-server
contact_groups linux-admins,management
...
}

7.20.11 Multiple Inheritance Sources

Thus far, all examples of inheritance have shown object definitions inheriting variables/values from just a single source.
You are also able to inherit variables/values from multiple sources for more complex configurations, as shown below.

7.20. Object Inheritance 189

Shinken Documentation, Release 2.4

Generic host template

define host{
name generic-host
active_checks_enabled 1
check_interval 10
register 0
}

Development web server template
define host{

name development-server
check_interval 15
notification_options d,u,r
...
register 0
}

Development web server
define host{

use generic-host,development-server
host_name devweb1
...
}

In the example above, devweb1 is inheriting variables/values from two sources: generic-host and development-server.
You’ll notice that a check_interval variable is defined in both sources. Since generic-host was the first template
specified in devweb1’s use directive, its value for the “check_interval” variable is inherited by the devweb1 host. After
inheritance, the effective definition of devweb1 would be as follows:

Development web serve
define host{

host_name devweb1
active_checks_enabled 1
check_interval 10
notification_options d,u,r
...
}

190 Chapter 7. Advanced Topics

Shinken Documentation, Release 2.4

7.20.12 Precedence With Multiple Inheritance Sources

When you use multiple inheritance sources, it is important to know how Shinken handles variables that are defined in
multiple sources. In these cases Shinken will use the variable/value from the first source that is specified in the use
directive. Since inheritance sources can themselves inherit variables/values from one or more other sources, it can get
tricky to figure out what variable/value pairs take precedence.

Consider the following host definition that references three templates:

Development web server
define host{

use 1, 4, 8
host_name devweb1
...

}

If some of those referenced templates themselves inherit variables/values from one or more other templates, the pre-
cendence rules are shown below. Testing, trial, and error will help you better understand exactly how things work in
complex inheritance situations like this. :-)

7.20. Object Inheritance 191

Shinken Documentation, Release 2.4

7.20.13 Inheritance overriding

Inheritance is a core feature allowing to factorize configuration. It is possible from a host or a service template to
build a very large set of checks with relatively few lines. The drawback of this approach is that it requires all hosts
or services to be consistent. But if it is easy to instanciate new hosts with their own definitions attributes sets, it is
generally more complicated with services, because the order of magnitude is larger (hosts * services per host), and
because few attributes may come from the host. This is is especially true for packs, which is a generalization of the
inheritance usage.

If some hosts require special directives for the services they are hosting (values that are different from those defined at
template level), it is generally necessary to define new service.

Imagine two web servers clusters, one for the frontend, the other for the backend, where the frontend servers should
notify any HTTP service in CRITICAL and WARNING state, and backend servers should only notify on CRITICAL
state.

To implement this configuration, we may define 2 different HTTP services with different notification options.

Example:

define service {
service_description HTTP Front
hostgroup_name front-web
notification_options c,w,r

...
}

define service {
service_description HTTP Back
hostgroup_name front-back
notification_options c,r

...
}

define host {
host_name web-front-01
hostgroups web-front
...

}
...

define host {
host_name web-back-01
hostgroups web-back
...

}
...

Another way is to inherit attributes on the service side directly from the host: some service attributes may be in-
herited directly from the host if not defined on the service template side (see Implied Inheritance), but not all. Our
notification_options in our example cannot be picked up from the host.

If the attribute you want to be set a custom value cannot be inherited from the host, you may use the
service_overrides host directive. Its role is to enforce a service directive directly from the host. This allows to
define specific service instance attributes from a same generalized service definition.

Its syntax is:

service_overrides xxx,yyy zzz

192 Chapter 7. Advanced Topics

Shinken Documentation, Release 2.4

It could be summarized as “For the service bound to me, named ‘‘xxx‘‘, I want the directive ‘‘yyy‘‘ set to ‘‘zzz‘‘ rather
tran the inherited value“

Example:

define service {
service_description HTTP
hostgroup_name web
notification_options c,w,r
...

}

define host {
host_name web-front-01
hostgroups web
...

}
...

define host {
host_name web-back-01
hostgroups web
service_overrides HTTP,notification_options c,r
...

}
...

In the previous example, we defined only one instance of the HTTP service, and we enforced the service
notification_options for the web servers composing the backend. The final result is the same, but the second
example is shorter, and does not require the second service definition.

Using packs allows an even shorter configuration.

Example:

define host {
use http
host_name web-front-01
...

}
...

define host {
use http
host_name web-back-01
service_overrides HTTP,notification_options c,r
...

}
...

In the packs example, the web server from the front-end cluster uses the value defined in the pack, and the one from the
backend cluster has its HTTP service (inherited from the HTTP pack also) enforced its notification_options
directive.

Important: The service_overrides attribute may himself be inherited from an upper host template. This is a multi-
valued attribute wchich syntax requires that each value is set on its own line. If you add a line on a host instance, it
will not add it to the ones defined at template level, it will overlobad them. If some of the values on the template level
are needed, they have to be explicitely copied.

Example:

7.20. Object Inheritance 193

Shinken Documentation, Release 2.4

define host {
name web-front
service_overrides HTTP,notification_options c,r
...
register 0

}
...

define host {
use web-fromt
host_name web-back-01
hostgroups web
service_overrides HTTP,notification_options c,r
service_overrides HTTP,notification_interval 15
...

}
...

7.20.14 Inheritance exclusions

Packs and hostgroups allow de factorize the configuration and greatly reduce the amount of configuration to write to
describe infrastructures. The drawback is that it forces hosts to be consistent, as the same configuration is applied to a
possibly very large set of machines.

Imagine a web servers cluster. All machines except one should be checked its managenent interface (ILO, iDRAC).
In the cluster, there is one virtual server that should be checked the exact same services than the others, except the
management interface (as checking it on a virtual server has no meaning). The corresponding service comes from a
pack.

In this situation, there is several ways to manage the situation:

• create in intermadiary template on the pack level to have the management interface check attached to an upper
level template

• re define all the services for the specifed host.

• use service overrides to set a dummy command on the corresponding service.

None of these options are satisfying.

There is a last solution that consists of excluding the corresponding service from the specified host. This may be done
using the service_excludes directive.

Example:

define host {
use web-fromt
host_name web-back-01
...

}

define host {
use web-fromt
host_name web-back-02 ; The virtual server
service_excludes Management interface
...

}
...

In the case you want the opposite (exclude all except) you can use the service_includes directive

194 Chapter 7. Advanced Topics

Shinken Documentation, Release 2.4

7.21 Advanced tricks

7.21.1 Time-Saving Tricks For Object Definitions

Abstract

or...”How To Preserve Your Sanity”

7.21.2 Introduction

This documentation attempts to explain how you can exploit the (somewhat) hidden features of template-based object
definitions to save your sanity. How so, you ask? Several types of objects allow you to specify multiple host names
and/or hostgroup names in definitions, allowing you to “copy” the object definition to multiple hosts or services. I’ll
cover each type of object that supports these features separately. For starters, the object types which support this
time-saving feature are as follows:

• Services

• Service escalations

• Service dependencies

• Host escalations

• Host dependencies

• Hostgroups

Object types that are not listed above (i.e. timeperiods, commands, etc.) do not support the features I’m about to
describe.

7.21.3 Service Definitions

Multiple Hosts:

If you want to create identical services that are assigned to multiple hosts, you can specify multiple hosts in the
“host_name” directive. The definition below would create a service called SOMESERVICE on hosts HOST1 through
HOSTN. All the instances of the SOMESERVICE service would be identical (i.e. have the same check command,
max check attempts, notification period, etc.).

define service{
host_name HOST1,HOST2,HOST3,...,HOSTN
service_description SOMESERVICE
other service directives ...

}

All Hosts In Multiple Hostgroups:

If you want to create identical services that are assigned to all hosts in one or more hostgroups, you can do so by
creating a single service definition. How ? The “hostgroup_name” directive allows you to specify the name of one
or more hostgroups that the service should be created for. The definition below would create a service called SOME-
SERVICE on all hosts that are members of hostgroups HOSTGROUP1 through HOSTGROUPN. All the instances of
the SOMESERVICE service would be identical (i.e. have the same check command, max check attempts, notification
period, etc.).

7.21. Advanced tricks 195

Shinken Documentation, Release 2.4

define service{
hostgroup_name HOSTGROUP1,HOSTGROUP2,...,HOSTGROUPN
service_description SOMESERVICE
other service directives ...

}

All Hosts:

If you want to create identical services that are assigned to all hosts that are defined in your configuration files, you
can use a wildcard in the “host_name” directive. The definition below would create a service called SOMESERVICE
on all hosts that are defined in your configuration files. All the instances of the SOMESERVICE service would be
identical (i.e. have the same check command, max check attempts, notification period, etc.).

define service{
host_name *
service_description SOMESERVICE
other service directives ...

}

Excluding Hosts:

If you want to create identical services on numerous hosts or hostgroups, but would like to exclude some hosts from
the definition, this can be accomplished by preceding the host or hostgroup with a ! symbol.

define service{
host_name HOST1,HOST2,!HOST3,!HOST4,...,HOSTN
hostgroup_name HOSTGROUP1,HOSTGROUP2,!HOSTGROUP3,!HOSTGROUP4,...,HOSTGROUPN
service_description SOMESERVICE
other service directives ...

}

7.21.4 Service Escalation Definitions

Multiple Hosts:

If you want to create service escalations for services of the same name/description that are assigned to multiple hosts,
you can specify multiple hosts in the “host_name” directive. The definition below would create a service escalation for
services called SOMESERVICE on hosts HOST1 through HOSTN. All the instances of the service escalation would
be identical (i.e. have the same contact groups, notification interval, etc.).

define serviceescalation{
host_name HOST1,HOST2,HOST3,...,HOSTN
service_description SOMESERVICE
other escalation directives ...

}

All Hosts In Multiple Hostgroups:

If you want to create service escalations for services of the same name/description that are assigned to all hosts in in
one or more hostgroups, you can do use the “hostgroup_name” directive. The definition below would create a service
escalation for services called SOMESERVICE on all hosts that are members of hostgroups HOSTGROUP1 through

196 Chapter 7. Advanced Topics

Shinken Documentation, Release 2.4

HOSTGROUPN. All the instances of the service escalation would be identical (i.e. have the same contact groups,
notification interval, etc.).

define serviceescalation{
hostgroup_name HOSTGROUP1,HOSTGROUP2,...,HOSTGROUPN
service_description SOMESERVICE
other escalation directives ...

}

All Hosts:

If you want to create identical service escalations for services of the same name/description that are assigned to all
hosts that are defined in your configuration files, you can use a wildcard in the “host_name” directive. The definition
below would create a service escalation for all services called SOMESERVICE on all hosts that are defined in your
configuration files. All the instances of the service escalation would be identical (i.e. have the same contact groups,
notification interval, etc.).

define serviceescalation{
host_name *
service_description SOMESERVICE
other escalation directives ...

}

Excluding Hosts:

If you want to create identical services escalations for services on numerous hosts or hostgroups, but would like to
exclude some hosts from the definition, this can be accomplished by preceding the host or hostgroup with a ! symbol.

define serviceescalation{
host_name HOST1,HOST2,!HOST3,!HOST4,...,HOSTN
hostgroup_name HOSTGROUP1,HOSTGROUP2,!HOSTGROUP3,!HOSTGROUP4,...,HOSTGROUPN
service_description SOMESERVICE
other escalation directives ...

}

All Services On Same Host:

If you want to create service escalations for all services assigned to a particular host, you can use a wildcard in the
“service_description” directive. The definition below would create a service escalation for all services on host HOST1.
All the instances of the service escalation would be identical (i.e. have the same contact groups, notification interval,
etc.).

If you feel like being particularly adventurous, you can specify a wildcard in both the “host_name” and “ser-
vice_description” directives. Doing so would create a service escalation for all services that you’ve defined in your
configuration files.

define serviceescalation{
host_name HOST1
service_description *
other escalation directives ...

}

7.21. Advanced tricks 197

Shinken Documentation, Release 2.4

Multiple Services On Same Host:

If you want to create service escalations for all multiple services assigned to a particular host, you can use a specify
more than one service description in the “service_description” directive. The definition below would create a service
escalation for services SERVICE1 through SERVICEN on host HOST1. All the instances of the service escalation
would be identical (i.e. have the same contact groups, notification interval, etc.).

define serviceescalation{
host_name HOST1
service_description SERVICE1,SERVICE2,...,SERVICEN
other escalation directives ...

}

All Services In Multiple Servicegroups:

If you want to create service escalations for all services that belong in one or more servicegroups, you can do use the
“servicegroup_name” directive. The definition below would create service escalations for all services that are members
of servicegroups SERVICEGROUP1 through SERVICEGROUPN. All the instances of the service escalation would
be identical (i.e. have the same contact groups, notification interval, etc.).

define serviceescalation{
servicegroup_name SERVICEGROUP1,SERVICEGROUP2,...,SERVICEGROUPN
other escalation directives ...

}

7.21.5 Service Dependency Definitions

Multiple Hosts:

If you want to create service dependencies for services of the same name/description that are assigned to multiple
hosts, you can specify multiple hosts in the “host_name” and or “dependent_host_name” directives. In the example
below, service SERVICE2 on hosts HOST3 and HOST4 would be dependent on service SERVICE1 on hosts HOST1
and HOST2. All the instances of the service dependencies would be identical except for the host names (i.e. have the
same notification failure criteria, etc.).

define servicedependency{
host_name HOST1,HOST2
service_description SERVICE1
dependent_host_name HOST3,HOST4
dependent_service_description SERVICE2
other dependency directives ...

}

All Hosts In Multiple Hostgroups:

If you want to create service dependencies for services of the same name/description that are assigned to all hosts in
in one or more hostgroups, you can do use the “hostgroup_name” and/or “dependent_hostgroup_name” directives.
In the example below, service SERVICE2 on all hosts in hostgroups HOSTGROUP3 and HOSTGROUP4 would
be dependent on service SERVICE1 on all hosts in hostgroups HOSTGROUP1 and HOSTGROUP2. Assuming there
were five hosts in each of the hostgroups, this definition would be equivalent to creating 100 single service dependency
definitions ! All the instances of the service dependency would be identical except for the host names (i.e. have the
same notification failure criteria, etc.).

198 Chapter 7. Advanced Topics

Shinken Documentation, Release 2.4

define servicedependency{
hostgroup_name HOSTGROUP1,HOSTGROUP2
service_description SERVICE1
dependent_hostgroup_name HOSTGROUP3,HOSTGROUP4
dependent_service_description SERVICE2
other dependency directives ...

}

All Services On A Host:

If you want to create service dependencies for all services assigned to a particular host, you can use a wildcard in the
“service_description” and/or “dependent_service_description” directives. In the example below, all services on host
HOST2 would be dependent on all services on host HOST1. All the instances of the service dependencies would be
identical (i.e. have the same notification failure criteria, etc.).

define servicedependency{
host_name HOST1
service_description *
dependent_host_name HOST2
dependent_service_description *
other dependency directives ...

}

Multiple Services On A Host:

If you want to create service dependencies for multiple services assigned to a particular host, you can specify more than
one service description in the “service_description” and/or “dependent_service_description” directives as follows:

define servicedependency{
host_name HOST1
service_description SERVICE1,SERVICE2,...,SERVICEN
dependent_host_name HOST2
dependent_service_description SERVICE1,SERVICE2,...,SERVICEN
other dependency directives ...

}

All Services In Multiple Servicegroups:

If you want to create service dependencies for all services that belong in one or more servicegroups, you can do use
the “servicegroup_name” and/or “dependent_servicegroup_name” directive as follows:

define servicedependency{
servicegroup_name SERVICEGROUP1,SERVICEGROUP2,...,SERVICEGROUPN
dependent_servicegroup_name SERVICEGROUP3,SERVICEGROUP4,...SERVICEGROUPN
other dependency directives ...

}

Same Host Dependencies:

If you want to create service dependencies for multiple services that are dependent on services on the same host, leave
the “dependent_host_name” and “dependent_hostgroup_name” directives empty. The example below assumes that
hosts HOST1 and HOST2 have at least the following four services associated with them: SERVICE1, SERVICE2,
SERVICE3, and SERVICE4. In this example, SERVICE3 and SERVICE4 on HOST1 will be dependent on both

7.21. Advanced tricks 199

Shinken Documentation, Release 2.4

SERVICE1 and SERVICE2 on HOST1. Similarly, SERVICE3 and SERVICE4 on HOST2 will be dependent on both
SERVICE1 and SERVICE2 on HOST2.

define servicedependency{
host_name HOST1,HOST2
service_description SERVICE1,SERVICE2
dependent_service_description SERVICE3,SERVICE4
other dependency directives ...

}

7.21.6 Host Escalation Definitions

Multiple Hosts:

If you want to create host escalations for multiple hosts, you can specify multiple hosts in the “host_name” directive.
The definition below would create a host escalation for hosts HOST1 through HOSTN. All the instances of the host
escalation would be identical (i.e. have the same contact groups, notification interval, etc.).

define hostescalation{
host_name HOST1,HOST2,HOST3,...,HOSTN
other escalation directives ...

}

All Hosts In Multiple Hostgroups:

If you want to create host escalations for all hosts in in one or more hostgroups, you can do use the “hostgroup_name”
directive. The definition below would create a host escalation on all hosts that are members of hostgroups HOST-
GROUP1 through HOSTGROUPN. All the instances of the host escalation would be identical (i.e. have the same
contact groups, notification interval, etc.).

define hostescalation{
hostgroup_name HOSTGROUP1,HOSTGROUP2,...,HOSTGROUPN
other escalation directives ...

}

All Hosts:

If you want to create identical host escalations for all hosts that are defined in your configuration files, you can use
a wildcard in the “host_name” directive. The definition below would create a hosts escalation for all hosts that are
defined in your configuration files. All the instances of the host escalation would be identical (i.e. have the same
contact groups, notification interval, etc.).

define hostescalation{
host_name *
other escalation directives ...

}

Excluding Hosts:

If you want to create identical host escalations on numerous hosts or hostgroups, but would like to exclude some hosts
from the definition, this can be accomplished by preceding the host or hostgroup with a ! symbol.

200 Chapter 7. Advanced Topics

Shinken Documentation, Release 2.4

define hostescalation{
host_name HOST1,HOST2,!HOST3,!HOST4,...,HOSTN
hostgroup_name HOSTGROUP1,HOSTGROUP2,!HOSTGROUP3,!HOSTGROUP4,...,HOSTGROUPN
other escalation directives ...

}

7.21.7 Host Dependency Definitions

Multiple Hosts:

If you want to create host dependencies for multiple hosts, you can specify multiple hosts in the “host_name” and/or
“dependent_host_name” directives. The definition below would be equivalent to creating six separate host dependen-
cies. In the example above, hosts HOST3, HOST4 and HOST5 would be dependent upon both HOST1 and HOST2.
All the instances of the host dependencies would be identical except for the host names (i.e. have the same notification
failure criteria, etc.).

define hostdependency{
host_name HOST1,HOST2
dependent_host_name HOST3,HOST4,HOST5
other dependency directives ...

}

All Hosts In Multiple Hostgroups:

If you want to create host escalations for all hosts in in one or more hostgroups, you can do use the “hostgroup_name”
and /or “dependent_hostgroup_name” directives. In the example below, all hosts in hostgroups HOSTGROUP3 and
HOSTGROUP4 would be dependent on all hosts in hostgroups HOSTGROUP1 and HOSTGROUP2. All the instances
of the host dependencies would be identical except for host names (i.e. have the same notification failure criteria, etc.).

define hostdependency{
hostgroup_name HOSTGROUP1,HOSTGROUP2
dependent_hostgroup_name HOSTGROUP3,HOSTGROUP4
other dependency directives ...

}

7.21.8 Hostgroups

All Hosts:

If you want to create a hostgroup that has all hosts that are defined in your configuration files as members, you can use
a wildcard in the “members” directive. The definition below would create a hostgroup called HOSTGROUP1 that has
all all hosts that are defined in your configuration files as members.

define hostgroup{
hostgroup_name HOSTGROUP1
members *
other hostgroup directives ...

}

7.21. Advanced tricks 201

Shinken Documentation, Release 2.4

7.22 Migrating from Nagios to Shinken

7.22.1 How to to import existing Nagios states

It’s possible with the nagios_retention_file module in fact.

The “migration” is done in two phases :

• First you launch shinken with both NagiosRetention and PickleRetention modules. It will load data from Na-
giosRetention and save them in a more “efficient” file. So add in shinken-specififc.cfg file both modules for your
scheduler object:

modules NagiosRetention ,PickleRetention

• Then you remove the NagiosRetention (it’s a read only module, don’t fear for your nagios retention file) and
restart with just PickleRetention. <code>modules PickleRetention

You’re done.

//Source:// Topic on forum

Important: This method has met with limited success, further testing of the NagiosRetention module is required. An
issues encountered should be raised in the Shinken issue tracker on github.

7.22.2 How to to import Nagios reporting data

There is no out of the box migration path for Historical reports.

7.23 Multi layer discovery

Shinken provides a discovery mecanism in several steps. There are on a side the runners (cf Runners description)
which are script that output in formatted way properties list of scanned host and on another side discovery rules which
use properties list to tag hosts when some of these properties are meaningful.

There are two kinds of rules, those which generate a host definition and those which launch another runners more
specific to the scanned object. Better an image than a long speech :

202 Chapter 7. Advanced Topics

http://www.shinken-monitoring.org/forum/index.php/topic,233.0.html

Shinken Documentation, Release 2.4

7.23.1 Runners available

Filesystems

Pre-requisites

To make this plugin works you must have snmp activated on targeted hosts. Take care to activate it and make HOST-
RESSOURCES MIB OID available to it. Beginning OID of HOST-RESSOURCES MIB is : .1.3.6.1.2.1.25. The
default discovery runner rule trigger this runner on unix host with port 161 open.

How it works:

FS discovery runner provides two modes : __macros__ and __tags__ modes. First one, __macros__ mode, will
output a comma-separated list of filesystems under host macro ‘_fs’, the other one will output tags with filesystems
mountpoint.

Important: All filesystems will output with character / replaced by an underscore _.

Macros mode.

It is the easiest mode. It will add a line into host definition with host macro ‘_fs’ with comma-separated list of filesys-
tems. Then it is only needed to write a service definition using that macro with shinken directive “duplicate_foreach”.
Here is an example :

7.23. Multi layer discovery 203

Shinken Documentation, Release 2.4

define service{
service_description DisksKEY
use generic-service
register 0
host_name linux
check_command check_linux_disks!KEY

duplicate_foreach _fs
}

KEY will be replaced by ‘_fs’ host macros value.

Tag mode

This mode will let you more flexibility to monitor filesystems. Each filesystems will be a tag named with filesystem
mountpoint then you need discovery rules to tag scanned host with filesystem name. Example if you want to monitor
“/var” filesystem on a host with following filesystems “/usr”, “/var”, “/opt”, “/home”, “/”. You will need a discovery
rules to match “/var”, then a host template materializing the tag and a service applied to host template :

define discoveryrule {
discoveryrule_name fs_var
creation_type host
fs var$
+use fs_var

}

will match “/var” filesystem and tell to tag with “fs_var”.

define host{
name fs_var
register 0

}

Host template used be scanned host.

define service{
host_name fs_var
use 10min_short
service_description Usage_var
check_command check_snmp_storage!"var$$"!50!25
icon_set disk
register 0

}

and service applied to “fs_var” host template, itself applied to scanned host.

Now, if you want to apply same treatment to several filesystems, like “/var” and “/home” by example :

define discoveryrule {
discoveryrule_name fs_var_home
creation_type host
fs var$|home$
+use fs_var_home

}

define host{
name fs_var_home
register 0

}

204 Chapter 7. Advanced Topics

Shinken Documentation, Release 2.4

define service{
host_name fs_var_home
use 10min_short
service_description Usage_var_and_home
check_command check_snmp_storage!"var$$|home$$"!50!25
icon_set disk
register 0

}

Pay attention to double “$$”, it is needed cause macros interpretation. When more than one “$” is used just double
them else in this example we gotten Shinken trying to interprate macro ‘$|home$’.

Cluster

Pre-requisites

SNMP needed to make this runner works. You have to activate SNMP daemon on host discovered and make OID of
clustering solution available to read. OID beginning for HACMP-MIB is : .1.3.6.1.4.1.2.3.1.2.1.5.1 and for Safekit is
: .1.3.6.1.4.1.107.175.10.

How it works

Runner does only detects HACMP/PowerHA and Safekit clustering solutions for the moment. It will scan OID and
return cluster name or module name list, depends on Safekit or HACMP. For a host with two Safekit modules test and
prod, runner will output :

./cluster_discovery_runnner.py -H sydlrtsm1 -O linux -C public
sydlrtsm1::safekit=Test,Prod

7.24 Multiple action urls

Since version <insert the version number here>, multiple action urls can be set for a service.

Syntax is :

define service {
service_description name of the service
[...]
action_url URL1,ICON1,ALT1|URL2,ICON2,ALT2|URL3,ICON3,ALT3

}

* URLx are the url you want to use

* ICONx are the images you want to display the link as. It can be either a local file, relative to the folder webui/plugins/eltdetail/htdocs/ or an url.

* ALTx are the alternative texts you want to display when the ICONx file is missing, or not set.

7.25 Aggregation rule

7.25.1 Goal

Got a way to define sort of agregation service for host services.

7.24. Multiple action urls 205

Shinken Documentation, Release 2.4

7.25.2 Sample 1

define host{
_disks /,/var,/backup

}

define service {
register 0
description Disk KEY
check_command check_disk!KEY

}

define service {
description All Disks
check_command bp_rule!., Disk $_HOSTDISKS$

}

ok this version sucks, we cannot parse this:

bp_rule!., Disk /,/var/backup</code>

7.25.3 version 2 (tag based agregation)

define host{
name template
register 0

}

define host{
host_name host1
use template
_disks /,/var,/backup

}

define service {
register 0
description Disk KEY
check_command check_disk!KEY
duplicate_foreach _disks
business_rule_aggregate disks

}

define service {
description All Disks
host_name anyhost
check_command bp_rule!host1,a:disks

}

define service {
description All Disks template based
host_name template
check_command bp_rule!,a:disks

206 Chapter 7. Advanced Topics

Shinken Documentation, Release 2.4

register 0
}

7.26 Scaling Shinken for large deployments

7.26.1 Planning your deployment

A monitoring system needs to meet the expected requirements. The first thing you, as the system/network administrator
need to do, is get management buy-in on deploying a supervisory and data acquisition system to meet corporate goals.
The second is to define the scope of the monitoring system and its particularities.

• Number of services to supervise

• Service check frequency

• Method of supervising the services Passive versus Active

• Protocol used for data acquisition (ping, SSH, NSCA, TSCA, SNMP, NRPE, NSCAweb, collectd, scripts, etc)

• Retention duration for performance data

• Retention duration for status data

• For each status or performance data determine if it meets the scope and goals of the project.

• Can you live with interpolated data (RRD) or do you require exact representation of data (Graphite)

• Do you need to store performance data out of sequence (Graphite) or not (RRD)

• Do you need Active-Active HA for performance data (Graphite)

• Do you want to make use of Shinken’s store and forward inter-process communications architecture to not lose
performance data (Graphite) or not (RRD)

How scalable is Shinken

Shinken can scale out horizontally on multiple servers or vertically with more powerful hardware. Shinken deals
automatically with distributed status retention. There is also no need to use external clustering or HA solutions.

Scalability can be described through a few key metrics

• Number of hosts + services supervised

• Number of active checks per second (type of active check having a major impact!)

• Number of check results per second (hosts and services combined)

And to a lesser extent, as performance data is not expected to overload a Graphite server instance (Which a single
server can do up to 80K updates per second with millions of metrics) or even RRDTool+RRDcache with a hardware
RAID 10 of 10K RPM disks.

• Number of performance data points (if using an external time-series database to store performance data)

Passive versus Active

Passive checks do not need to be scheduled by the monitoring server. Data acquisition and processing is distributed to
the monitored hosts permitting lower acquisition intervals and more data points to be collected.

Active checks benefit from Shinken’s powerful availability algorithms for fault isolation and false positive elimination.

7.26. Scaling Shinken for large deployments 207

Shinken Documentation, Release 2.4

A typical installation should make use of both types of checks.

Scaling the data acquisition

Thought needs to be used in determining what protocol to use and how many data points need to be collected will
influence the acquisition method. There are many ways to slice an apple, but only a few scale beyond a few thousand
services.

What is a big deployment? It depends on check frequency, number of services and check execution latency. 10K per
minute NSCA based passive services is nothing for Shinken. 10K SSH checks per minute is unrealistic. 10K SNMP
checks per minute can grind a server to a halt if not using an efficient polling method. Large deployments could easily
ask for 20K, 50K, 80K services per minute.

Large numbers of active checks need to use poller modules

• nrpe_booster

• snmp_booster

Other integrated poller modules can be easily developed as required for ICMP(ping), SSH, TCP probes, etc.

Check_mk also uses a daemonized poller for its Windows and Unix agents which also makes it a good choice for
scaling data acquisition from hosts. Note that WATO, the configuration front-end is not compatible with Shinken at
this time. Check_mk is also limited to RRD backends.

Scaling the broker

The broker is a key component of the scalable architecture. Only a single broker can be active per scheduler. A broker
can process broks (messages) from multiple schedulers. In most modern deployments, Livestatus is the broker module
that provides status information to the web frontends. (Nagvis, Multisite, Thruk, etc.) or Shinken’s own WebUI
module. The broker needs memory and processing power.

Avoid using any broker modules that write logs or performance data to disk as an intermediate step prior to submission
to the time series database. Use the Graphite broker module which will directly submit data to load-shared and/or
redundant Graphite instances. Graphite is a time-series storage and retrieval database.

Make use of sqlite3 or mongodb to store Livestatus retention data. MongoDB integration with Livestatus is considered
somewhat experimental, but can be very beneficial if performance and resiliency are desired. Especially when using a
spare broker. MongoDB will ensure historical retention data is available to the spare broker, whereas with SQLite, it
will not, and manual syncing is required.

Important: Code optimizations, a new JSON encoder/decoder, indexing and other means of decreasing access time
to the in-memory data have been implemented in Shinken 1.2. These enhancements have improved markedly response
time for small to extra large Livestatus instances.

Web Interface

MK Multisite and Nagvis are the only viable choices for very large installations. They can use multiple Nagios and
Shinken monitoring servers as data providers and are based on the Livestatus API. Livestatus is a networked API for
efficient remote access to Shinken run time data.

Dependency model

Shinken has a great dependency resolution model. Automatic root cause isolation, at a host level, is one method that
Shinken provides. This is based on explicitly defined parent/child relationships. This means that on a service or host

208 Chapter 7. Advanced Topics

http://graphite.readthedocs.org/en/0.9.10/index.html

Shinken Documentation, Release 2.4

failure, it will automatically reschedule an immediate check of the parent(s). Once the root failure(s) are found, any
children will be marked as unknown status instead of soft down.

This model is very useful in reducing false positives. What needs to be understood is that it depends on defining a
dependency tree. A dependency tree is restricted to single scheduler. Shinken provides a distributed architecture, that
needs at least two trees for it to make sense.

Splitting trees by a logical grouping makes sense. This could be groups of services, geographic location, network
hierarchy or other. Some elements may need to be duplicated at a host level (ex. ping check) like common critical
elements (core routers, datacenter routers, AD, DNS, DHCP, NTP, etc.). A typical tree will involve clients, servers,
network paths and dependent services. Make a plan, see if it works. If you need help designing your architecture, a
professional services offering is in the works by the Shinken principals and their consulting partners.

Scaling the acquisition daemons

Typically pollers and Schedulers use up the most network, CPU and memory resources. Use the distributed architec-
ture to scale horizontally on multiple commodity servers. Use at least a pair of Scheduler daemons on each server.
Your dependency model should permit at least two trees, preferably 4.

7.26.2 Active acquisition methods

Scaling SNMP acquisition

Typically for networking devices, SNMP v2c is the most efficient method of data acquisition. Security considerations
should be taken into account on the device accepting snmpv2c requests so that they are filtered to specific hosts and
restricted to the required OIDs, this is device specific. Snmpv2c does not encrypt or protect the data or the passwords.

There is a myriad of SNMP monitoring scripts, most are utter garbage for scalable installations. This is simply due
to the fact that every time they are launched a perl or python interpreter needs to be launched, modules need to be
imported, the script executed, results get returned and then the script is cleared from memory. Rinse and repeat, very
inefficient. Only two SNMP polling modules can meet high scalability requirements.

Shinken’s integrated SNMP poller can scale to thousands of SNMP checks per second.

Check_mk also has a good SNMP acquisition model.

Scaling NRPE acquisition

Shinken provides an integrated NRPE check launcher. It is implemented in the poller as a module that allows to bypass
the launch of the check_nrpe process. It reads the check command and opens the connection itself. It allows a big
performance boost for launching check_nrpe calls.

The command definitions should be identical to the check_nrpe calls.

7.26.3 Passive acquisition methods

Scaling metric acquisition

Metrics or performance data (in Nagios speak) are embedded with check results. A check result can have zero or more
performance metrics associated with it. Theses are transparently passed off to systems outside of Shinken using a
Broker module. The Graphite broker module can easily send more than 2000 metrics per second. We have not tested
the upper limit. Graphite itself can be configured to reach upper bounds of 80K metrics per second.

7.26. Scaling Shinken for large deployments 209

Shinken Documentation, Release 2.4

If a metric does not need its own service, it should be combined with a similar natured check being run on the
server. Services are the expensive commodity, as they have all the intelligence like to them such as timeouts, retries,
dependencies, etc. With Shinken 1.2 and fast servers, you should not exceed 60K services for optimum performance.

Recommended protocols for scalable passive acquisition

• TSCA (Used under Z/OS and embedded in applications)

• Ws_Arbiter (Used by GLPI)

• NSCA (generic collection)

• Collectd (metrics only, states are calculated from metrics by the Shinen Scheduler using Shinken Python Trig-
gers)

7.26.4 Log management methods

System and application logs should be gathered from servers and network devices. For this a centralized logging and
analysis system is required.

Suggested centralized logging systems: OSSEC+Splunk for OSSEC, loglogic, MK Multisite log manager

Suggested windows agents:

• OSSEC agent

• Splunk universal forwarder

Suggested linux agent:

• OSSEC agent

• Splunk universal forwarder

Suggested Solaris agent:

• OSSEC agent

• Splunk universal forwarder

Splunk can aggregate the data, drop worthless data (unless mandated to log everything due to regulatory compliance),
aggregate, analyze and alert back into Shinken. Log reporting and dashboards are a million times better in Splunk than
anything else. If regulatory compliance causes too much data to be logged, look into using Kibana+logstash instead
of Splunk, because Splunk costs a wicked lot per year.

7.26.5 SLA reporting methods

Feed Shinken event data back into Splunk, Thruk, Canopsis to get SLA reports. Use MK Multisites Livestatus based
reporting.

7.26.6 Practical optimization tips

Chapter 59. Tuning Shinken For Maximum Performance

Internal Shinken metrics to monitor

210 Chapter 7. Advanced Topics

Shinken Documentation, Release 2.4

7.27 Defining advanced service dependencies

First, the basics. You create service dependencies by adding service dependency definitions in your object config
file(s). In each definition you specify the dependent service, the service you are depending on, and the criteria (if any)
that cause the execution and notification dependencies to fail (these are described later).

You can create several dependencies for a given service, but you must add a separate service dependency definition for
each dependency you create.

7.27.1 Example Service Dependencies

The image below shows an example logical layout of service notification and execution dependencies. Different
services are dependent on other services for notifications and check execution.

In this example, the dependency definitions for Service F on Host C would be defined as follows:

define servicedependency{
host_name Host B
service_description Service D
dependent_host_name Host C
dependent_service_description Service F
execution_failure_criteria o
notification_failure_criteria w,u

}

define servicedependency{

7.27. Defining advanced service dependencies 211

Shinken Documentation, Release 2.4

host_name Host B
service_description Service E
dependent_host_name Host C
dependent_service_description Service F
execution_failure_criteria n
notification_failure_criteria w,u,c

}

define servicedependency{
host_name Host B
service_description Service C
dependent_host_name Host C
dependent_service_description Service F
execution_failure_criteria w
notification_failure_criteria c

}

The other dependency definitions shown in the image above would be defined as follows:

define servicedependency{
host_name Host A
service_description Service A
dependent_host_name Host B
dependent_service_description Service D
execution_failure_criteria u
notification_failure_criteria n

}

define servicedependency{
host_name Host A
service_description Service B
dependent_host_name Host B
dependent_service_description Service E
execution_failure_criteria w,u
notification_failure_criteria c

}

define servicedependency{
host_name Host B
service_description Service C
dependent_host_name Host B
dependent_service_description Service E
execution_failure_criteria n
notification_failure_criteria w,u,c

}

7.27.2 How Service Dependencies Are Tested

Before Shinken executes a service check or sends notifications out for a service, it will check to see if the service
has any dependencies. If it doesn’t have any dependencies, the check is executed or the notification is sent out as it
normally would be. If the service does have one or more dependencies, Shinken will check each dependency entry as
follows:

• Shinken gets the current status:ref:* <advanced/dependencies#advancedtopics_dependencies_hard_dependencies>
of the service that is being depended upon.

• Shinken compares the current status of the service that is being depended upon against either the execution or

212 Chapter 7. Advanced Topics

Shinken Documentation, Release 2.4

notification failure options in the dependency definition (whichever one is relevant at the time).

• If the current status of the service that is being depended upon matches one of the failure options, the dependency
is said to have failed and Shinken will break out of the dependency check loop.

• If the current state of the service that is being depended upon does not match any of the failure options for the
dependency entry, the dependency is said to have passed and Shinken will go on and check the next dependency
entry.

This cycle continues until either all dependencies for the service have been checked or until one dependency check
fails.

• One important thing to note is that by default, Shinken will use the most current hard state of the service(s) that
is/are being depended upon when it does the dependency checks. If you want Shinken to use the most current
state of the services (regardless of whether its a soft or hard state), enable the soft_state_dependencies option.

7.27.3 Execution Dependencies

Execution dependencies are used to restrict when active checks of a service can be performed. Passive checks are not
restricted by execution dependencies.

If all of the execution dependency tests for the service passed, Shinken will execute the check of the service as it
normally would. If even just one of the execution dependencies for a service fails, Shinken will temporarily prevent
the execution of checks for that (dependent) service. At some point in the future the execution dependency tests for
the service may all pass. If this happens, Shinken will start checking the service again as it normally would. More
information on the check scheduling logic can be found here.

In the example above, Service E would have failed execution dependencies if Service B is in a WARNING or UN-
KNOWN state. If this was the case, the service check would not be performed and the check would be scheduled for
(potential) execution at a later time.

Warning: Execution dependencies will limit the load due to useless checks, but can limit some correlation logics,
and so should be used only if you trully need them.

7.27.4 Notification Dependencies

If all of the notification dependency tests for the service passed, Shinken will send notifications out for the service as it
normally would. If even just one of the notification dependencies for a service fails, Shinken will temporarily repress
notifications for that (dependent) service. At some point in the future the notification dependency tests for the service
may all pass. If this happens, Shinken will start sending out notifications again as it normally would for the service.
More information on the notification logic can be found here.

In the example above, Service F would have failed notification dependencies if Service C is in a CRITICAL state,
//and/or* Service D is in a WARNING or UNKNOWN state, and/or// if **Service E* is in a WARNING, UNKNOWN,
or CRITICAL state. If this were the case, notifications for the service would not be sent out.

7.27.5 Dependency Inheritance

As mentioned before, service dependencies are not inherited by default. In the example above you can see that Service
F is dependent on Service E. However, it does not automatically inherit Service E’s dependencies on Service B and
Service C. In order to make Service F dependent on Service C we had to add another service dependency definition.
There is no dependency definition for Service B, so Service F is not dependent on Service B.

If you do wish to make service dependencies inheritable, you must use the inherits_parent directive in the service
dependency definition. When this directive is enabled, it indicates that the dependency inherits dependencies of the

7.27. Defining advanced service dependencies 213

Shinken Documentation, Release 2.4

service that is being depended upon (also referred to as the master service). In other words, if the master service is
dependent upon other services and any one of those dependencies fail, this dependency will also fail.

In the example above, imagine that you want to add a new dependency for service F to make it dependent on service
A. You could create a new dependency definition that specified service F as the dependent service and service A as
being the master service (i.e. the service that is being dependend on). You could alternatively modify the dependency
definition for services D and F to look like this:

define servicedependency{
host_name Host B
service_description Service D
dependent_host_name Host C
dependent_service_description Service F
execution_failure_criteria o
notification_failure_criteria n
inherits_parent 1

}

Since the inherits_parent directive is enabled, the dependency between services A and D will be tested when the
dependency between services F and D are being tested.

Dependencies can have multiple levels of inheritance. If the dependency definition between A and D had its inher-
its_parent directive enable and service A was dependent on some other service (let’s call it service G), the service F
would be dependent on services D, A, and G (each with potentially different criteria).

7.27.6 Host Dependencies

As you’d probably expect, host dependencies work in a similar fashion to service dependencies. The difference is that
they’re for hosts, not services.

Do not confuse host dependencies with parent/child host relationships. You should be using parent/child host rela-
tionships (defined with the parents directive in host definitions) for most cases, rather than host dependencies. A
description of how parent/child host relationships work can be found in the documentation on network reachability.

Here are the basics about host dependencies:

• A host can be dependent on one or more other host

• Host dependencies are not inherited (unless specifically configured to)

• Host dependencies can be used to cause host check execution and host notifications to be suppressed under
different circumstances (UP, DOWN, and/or UNREACHABLE states)

• Host dependencies might only be valid during specific timeperiods

7.27.7 Example Host Dependencies

The image below shows an example of the logical layout of host notification dependencies. Different hosts are depen-
dent on other hosts for notifications.

214 Chapter 7. Advanced Topics

Shinken Documentation, Release 2.4

In the example above, the dependency definitions for Host C would be defined as follows:

define hostdependency{
host_name Host A
dependent_host_name Host C
notification_failure_criteria d

}

define hostdependency{
host_name Host B
dependent_host_name Host C
notification_failure_criteria d,u

}

As with service dependencies, host dependencies are not inherited. In the example image you can see that Host C does
not inherit the host dependencies of Host B. In order for Host C to be dependent on Host A, a new host dependency
definition must be defined.

Host notification dependencies work in a similar manner to service notification dependencies. If all of the notification
dependency tests for the host pass, Shinken will send notifications out for the host as it normally would. If even just
one of the notification dependencies for a host fails, Shinken will temporarily repress notifications for that (dependent)
host. At some point in the future the notification dependency tests for the host may all pass. If this happens, Shinken
will start sending out notifications again as it normally would for the host. More information on the notification logic
can be found here.

7.27. Defining advanced service dependencies 215

Shinken Documentation, Release 2.4

7.28 Shinken’s distributed architecture

7.28.1 Shinken’s distributed architecture for load balancing

The load balancing feature is very easy to obtain with Shinken. If I say that the project’s name comes from it you
should believe me :)

If you use the distributed architecture for load balancing, know that load is typically present in 2 processes:

• pollers: they launch checks, they use a lot of CPU resources

• schedulers: they schedule, potentially lots of checks

For both, a limit of 150000 checks/5min is a reasonable goal on an average server(4 cores@3Ghz). Scaling can be
achieved horizontally by simply adding more servers and declaring them as pollers or schedulers.

Tip: The scheduler is NOT a multi-threaded process, so even if you add cores to your server, it won’t change it’s
performances.

There are mainly two cases where load is a problem:

• using plugins that require lots of processing (check_esx3.pl is a good example)

• scheduling a very large number of checks (> 150000 checks in 5 minutes).

In the first case, you need to add more pollers. In the second, you need to add more schedulers. In this last case,
you should also consider adding more pollers (more checks = more pollers) but that can be determined by the load
observed on your poller(s).

From now, we will focus on the first case, typically installations have less than 150K checks in 5 minutes, and will
only need to scale pollers, not schedulers.

7.28.2 Setup a load balancing architecture with some pollers

Install the poller on the new server

But I already hear you asking “How to add new satellites?”. That’s very simple: you start by installing the applica-
tion on a new server like you did in the 10 min starting tutorial but you can pass the discovery, the webUI and
skip the /etc/init.d/shinken script (or Windows services).

Let say that this new server is called server2 and has the IP 192.168.0.2 and the “master” is called server1 with
192.168.0.1 as its IP.

Tip: You need to have all plugins you use in server1 also installed on server2, this should already done if you followed
the 10 min tutorial.

On server2, you just need to start the poller service, not the whole Shinken stack.

On ubuntu/debian:
update-rc.d shinken-poller default
On RedHat/Centos:

chkconfig --add shinken-poller
chkconfig shinken-poller on

Then start it:

216 Chapter 7. Advanced Topics

Shinken Documentation, Release 2.4

sudo /etc/init.d/shinken-poller start

Warning: DO NOT START the arbiter on the server2 for load balancing purpose. It can be done for high
availability. Unless you know what you are doing, don’t start the arbiter process!^_^

Declare the new poller on the main configuration file

Ok, now you have a brand new poller declared on your new server, server2. But server1 needs to know that it must
give work to it. This is done by declaring the new poller in the pollers/poller-master.cfg file.

Edit your /etc/shinken/pollers/poller-master.cfg file (or c:shinkenetcpollerspoller-master.cfg under Windows) and de-
fine your new poller under the existing poller-1 definition (on server1):

#Pollers launch checks
define poller{

poller_name poller-2
address server2
port 7771

}

Be sure to have also those lines:

define scheduler{
scheduler_name scheduler-1 ; just the name
address 192.168.0.1 ; ip or dns address of the daemon
port 7768 ; tcp port of the daemon

The address has to be 192.168.0.1 or server1 but not localhost!

Important: Check that the line named host in the scheduler.ini is 0.0.0.0 in order to listen on all interfaces.

When it’s done, restart your arbiter:

Under Linux:
sudo /etc/init.d/shinken-arbiter restart
Under Windows:
net stop shinken-arbiter
net start shinken-arbiter

It’s done! You can look at the global shinken.log file (should be under /var/lib/shinken/shinken.log or
c:shinkenvarshinken.log) that the new poller is started and can reach scheduler-1. So look for lines like:

[All] poller satellite order: poller-2 (spare:False), poller-1 (spare:False),
[All] Trying to send configuration to poller poller-2
[All] Dispatch OK of for configuration 0 to poller poller-2

You can also look at the poller logs on server2. You may have lines like that:

Waiting for initial configuration
[poller-2] Init de connection with scheduler-1 at PYROLOC://192.168.0.1:7768/Checks
[poller-2] Connexion OK with scheduler scheduler-1
We have our schedulers: {0: {'wait_homerun': {}, 'name': u'scheduler-1', 'uri': u'PYROLOC://192.168.0.1:7768/Checks', 'actions': {}, 'instance_id': 0, 'running_id': '1312996582.0', 'address': u'192.168.0.1', 'active': True, 'port': 7768, 'con': <DynamicProxy for PYROLOC://192.168.0.1:7768/Checks>}}
I correctly loaded the modules: []
[poller-2] Allocating new fork Worker: 0

7.28. Shinken’s distributed architecture 217

Shinken Documentation, Release 2.4

7.29 Shinken’s distributed architecture with realms

7.29.1 Multi customers and/or sites: REALMS

Shinken’s architecture like we saw allows us to have a unique administration and data location. All pollers the hosts
are cut and sent to schedulers, and the pollers take jobs from all schedulers. Every one is happy.

Every one? In fact no. If an administrator got a continental distributed architecture he can have serious problems. If
the architecture is common to multiple customers network, a customer A scheduler can have a customer B poller that
asks him jobs. It’s not a good solution. Even with distributed network, distant pollers should not ask jobs to schedulers
in the other continent, it’s not network efficient.

That is where the site/customers management is useful. In Shinken, it’s managed by the realms.

A realm is a group of resources that will manage hosts or hostgroups. Such a link will be unique: a host cannot be in
multiple realms. If you put a hostgroup in a realm, all hosts in this group will be in the realm (unless a host already
has the realm set, the host value will be taken).

A realm is:

• at least a scheduler

• at least a poller

• can have a reactionner

• can have a broker

In a realm, all realm pollers will take all realm schedulers jobs.

Important: Very important: there is only ONE arbiter (and a spare of course) for ALL realms. The arbiter manages
all realms and all that is inside.

7.29.2 Sub-realms

A realm can have sub-realms. It doesn’t change anything for schedulers, but it can be useful for other satellites and
spares. Reactionners and brokers are linked to a realm, but they can take jobs from all sub-realms too. This way you
can have less reactionners and brokers (like we soon will see).

The fact that reactionners/brokers (and in fact pollers too) can take jobs from sub-schedulers is decided by the presence
of the manage_sub_realms parameter. For pollers the default value is 0, but it’s 1 for reactionners/brokers.

7.29.3 An example

To make it simple: you put hosts and/or hostgroups in a realm. This last one is to be considered as a resources pool.
You don’t need to touch the host/hostgroup definition if you need more/less performances in the realm or if you want
to add a new satellites (a new reactionner for example).

Realms are a way to manage resources. They are the smaller clouds in your global cloud infrastructure :)

If you do not need this feature, that’s not a problem, it’s optional. There will be a default realm created and every one
will be put into.

It’s the same for hosts that don’t have a realm configured: they will be put in the realm that has the “default” parameter.

218 Chapter 7. Advanced Topics

Shinken Documentation, Release 2.4

7.29.4 Picture example

Diagrams are good :)

Let’s take two examples of distributed architectures around the world. In the first case, the administrator don’t want
to share resources between realms. They are distinct. In the second, the reactionners and brokers are shared with all
realms (so all notifications are send from a unique place, and so is all data).

Here is the isolated one:

And a more common way of sharing reactionner/broker:

7.29. Shinken’s distributed architecture with realms 219

Shinken Documentation, Release 2.4

Like you can see, all elements are in a unique realm. That’s the sub-realm functionality used for reactionner/broker.

7.29.5 Configuration of the realms

Here is the configuration for the shared architecture:

define realm {
realm_name All
realm_members Europe,US,Asia
default 1 ;Is the default realm. Should be unique!

}

define realm{
realm_name Europe
realm_members Paris ;This realm is IN Europe

}

An now the satellites:

define scheduler{
scheduler_name scheduler_Paris
realm Paris ;It will only manage Paris hosts

}

define reactionner{
reactionner_name reactionner-master
realm All ;Will reach ALL schedulers

}

220 Chapter 7. Advanced Topics

Shinken Documentation, Release 2.4

And in host/hostgroup definition:

define host{
host_name server-paris
realm Paris ;Will be put in the Paris realm
[...]

}

define hostgroups{
hostgroup_name linux-servers
alias Linux Servers
members srv1,srv2
realm Europe ;Will be put in the Europe realm

}

7.29.6 Multi levels brokers

In the previous samples, if you put numerous brokers into the realm, each scheduler will have only one broker at the
same time. It was also impossible to have a common Broker in All, and one brokers in each sub-realms.

You can activate multi-brokers features with a realm parameter, the broker_complete_links option (0 by default).

You will have to enable this option in ALL your realms! For example:

define realm{
realm_name Europe
broker_complete_links 1

}

This will enable the fact that each scehduler will be linked with each brokers. This will make possible to have
dedicated brokers in a same realm (one for WebUI, another for Graphite for example). It will also make possible
to have a common Broker in “All”, and one broker in each of its sub-realms (Europe, US and Asia). Of course the
sub-brokers will only see the data from their realms, and the sub-realms (like Paris for Europe for example).

7.30 Businessimpact modulations

7.30.1 How businessimpact modulations works

Depending on your configuration you may want to change the business impact of a specific host during the night. For
example you don’t consider a specific application as critical for business during night because there are no users, so
impact is lower on errors.

7.30.2 How to define a businessimpact_modulation

define businessimpactmodulation{
business_impact_modulation_name LowImpactOnNight
business_impact 1
modulation_period night

}

define service{

7.30. Businessimpact modulations 221

Shinken Documentation, Release 2.4

check_command check_crm_status
check_period 24x7
host_name CRM
service_description CRM_WEB_STATUS
use generic-service
business_impact 3
businessimpactmodulations LowImpactOnNight

}

Here the business impact will be modulated to 1 during night for the service CRM_WEB_STATUS.

7.31 Check modulations

7.31.1 How check modulations works

Depending on your configuration you may want to change the check_command during the night. For example, you
want to send more packets for a ping during the night because there is less network activity so that you can get more
accurate data.

7.31.2 How to define a check_modulation

define checkmodulation{
checkmodulation_name ping_night
check_command check_ping_night
check_period night

}

define host{
check_command check_ping
check_period 24x7
host_name localhost
use generic-host
checkmodulations ping_night

}

Here check_ping will be modulated into check_ping_night for the host localhost.

7.32 Macro modulations

7.32.1 How macros modulations works

It’s a good idea to have macros for critical/warning levels on the host or its templates. But sometime even with this, it
can be hard to manage such cases wher you want to have high levels during the night, and a lower one during the day.

macro_modulations is made for this.

222 Chapter 7. Advanced Topics

Shinken Documentation, Release 2.4

7.32.2 How to define a macro_modulation

define macromodulation{
macromodulation_name HighDuringNight
modulation_period night
_CRITICAL 20
_WARNING 10

}

define host{
check_command check_ping
check_period 24x7
host_name localhost
use generic-host
macromodulations HighDuringNight
_CRITICAL 5
_WARNING 2

}

With this, the services will get 5 and 2 for the threshold macros during the day, and will automatically get 20 and 10
during the night timeperiod. You can have as many modulations as you want. The first modulation enabled will take
the lead.

7.33 Result modulations

7.33.1 How result modulations works

Depending on your configuration you may want to consider a critical state returned by plugin to be only a warning.
For example if you don’t want a critical state to be emitted during the night (because it will wake someone up) then
you can consider the critical state as a warning.

7.33.2 How to define a result_modulation

define resultmodulation{
resultmodulation_name critical_is_warning
exit_codes_match 2 ; list of code to change
exit_code_modulation 1 ; code that will be put if the code match
modulation_period night ; period when to apply the modulation

}

define host{
check_command check_ping
check_period 24x7
host_name localhost
use generic-host
resultmodulations critical_is_warning

}

Here critical from check_ping will be modulated into a warning for the host localhost.

7.33. Result modulations 223

Shinken Documentation, Release 2.4

7.34 Shinken and Android

Shinken can run on an android device like a phone. It can be very useful for one particular daemon: the reactionner
that send alerts. With this, you can setup a “sms by phone” architecture, with high availability. We will see that you
can also receive ACKs by SMS :)

All you need is one (or two if you want high availability) android phone with an internet connection and Wifi. Any
version should work.

Tip: This is of course for fun. Unless you have a secure connection to your monitoring infrastructure. You should
never open up your firewall to have in/out communications from a mobile phone directly to your monitoring systems.
A serious infrastructure should use an SMS gateway in a DMZ that receives notifications from a your monitoring
system. Either sourced as mails, or other message types.

7.34.1 Sending SMS

Install Python on your phone

• enable the “Unknown sources” option in your device’s “Application” settings to allow application installation
from another source that the android marker.

• Go to http://code.google.com/p/android-scripting/ and “flash” the barcode with an application like “barcode
scanner”, or just download http://android-scripting.googlecode.com/files/sl4a_r4.apk. Install this application.

• Launch the sl4a application you just installed.

• click in the menu button, click “view” and then select “interpreter”

• click the menu button again, then add and select “Python 2.6”. Then click to install.

• Don’t close your sdcard explorer

Install Shinken on your phone

• Connect your phone to a computer, and open the sdcard disk.

• Copy your shinken library directory in SDCARDcom.googlecode.pythonforandroidextraspython. If you do
not have the SDCARDcom.googlecode.pythonforandroidextraspythonshinken__ini__.py file, you put the bad
directory.

• Copy the bin/shinken-reactionner file in SDCARDsl4ascripts direcotry and rename it shinken-reactionner.py (so
add the .py extension)

Time to launch the Shinken app on the phone

• Unmount the phone from your computer and be sure to re-mount the sdcard on your phone (look at the notifica-
tions).

• Launch the sl4a app

• launch the shinken-reactionner.py app in the script list.

• It should launch without errors

224 Chapter 7. Advanced Topics

http://code.google.com/p/android-scripting/
http://android-scripting.googlecode.com/files/sl4a_r4.apk

Shinken Documentation, Release 2.4

Declare this daemon in the central configuration

The phone(s) will be a new reactionner daemon. You should want to only launch SMS with it, not mail commands or
nother notifications. So you will have to define this reactionner to manage only the SMS commands.

define reactionner{
reactionner_name reactionner-Android
address WIFIIPOFYOURPHONE
port 7769
spare 0

Modules
modules AndroidSMS
reactionner_tags android_sms

}

Reactionner can be launched under an android device
and can be used to send SMS with this module
define module{

module_name AndroidSMS
module_type android_sms

}

The important lines are:

• address: put the Wifi address of your phone

• modules: load the Android module to be able to manage sms sent.

• reactionner_tags: only android_sms commands will be send to this reactionner.

In the commands.cfg, there are example of sms sending commands

For Android SMS things
You need both reactionner_tag and module_type in most cases!
define command{

command_name notify-host-by-android-sms
command_line android_sms $CONTACTPAGER$ Host: $HOSTNAME$\nAddress: $HOSTADDRESS$\nState: $HOSTSTATE$\nInfo: $OUTPUT$\nDate: $DATETIME$
reactionner_tag android_sms
module_type android_sms

}

define command{
command_name notify-service-by-android-sms
command_line android_sms $CONTACTPAGER$ Service: $SERVICEDESC$\nHost: $HOSTNAME$\nAddress: $HOSTADDRESS$\nState: $SERVICESTATE$\nInfo: $OUTPUT$\nDate: $DATETIME$
reactionner_tag android_sms
module_type android_sms

}

The important part are the reactionner_tag and module_type lines. With this parameter, you are sure the command will be managed by:

• only the reactionner(s) with the tag android_sms, and in this reactionner, it will be managed by the module
android_sms.

7.34. Shinken and Android 225

Shinken Documentation, Release 2.4

Add SMS notification ways

In order to use SMS, it is a good thing to add notification way dedicated to send SMS, separated from email notifica-
tions. Edit templates and add theses lines to declare a new notification way using SMS (more about notification ways)
:

define notificationway{
notificationway_name android-sms
service_notification_period 24x7
host_notification_period 24x7
service_notification_options c,w,r
host_notification_options d,u,r,f,s
service_notification_commands notify-service-by-android-sms
host_notification_commands notify-host-by-android-sms

}

Add SMS to your contacts

You only need to add theses commands to your contacts (or contact templates, or notification ways) to send them SMS:

define contact{
name generic-contact ; The name of this contact template
[...]
notificationways email,android-sms ; Use email and sms to notify the contact

That’s all.

7.34.2 Receive SMS: acknowledge with a SMS

Pre-requite

You need to have a working android-reactionner with the sms module. The sms reception will be automatically
enabled.

How to send ACK from SMS?

All you need is to send a SMS to the phone with the format:

For a service:

ACK host_name/service_description

For a host:

ACK host_name

And it will automatically raise an acknowledgment for this object :)

7.35 Send sms by gateway

Shinken can be used to send sms to you and other people when you got an alert.

I will tell you how to do it with ovh gateway. If you need for another one you need to modify a little bit the information.

226 Chapter 7. Advanced Topics

Shinken Documentation, Release 2.4

7.35.1 1. you need to go to your contact file which is for linux in
/etc/shinken/contacts/

For each user you need to add her phone number in the pager line. (For ovh you need to do it with 0032 for example
and not +32 , all phone number must be with the international prefix).

In the same file you need also to add these lines in each contact you want that I receive ams.

host_notifications_enabled 1 // This will activate the notifications for the hosts
service_notifications_enabled 1 // This will activate the notifications for the services
notificationways SMS // This is the name of your notifications ways (You can write what you want but remember what you set)

Then you need to add this at the end of the contacts.cfg

define notificationway{
notificationway_name SMS // Here you need to put the name of the notifications ways you write up
service_notification_period 24x7 // Here I will receive ams all the time, If you want to receive them for only the night replace 24x7 by night.
host_notification_period 24x7 // Same as above
service_notification_options w,c,r // It tell that I want receive a sms for the hosts who are in warning / critical / recovery

host_notification_options d,r // It tell that I want receive a sms for the services who are down and recovery
service_notification_commands notify-service-by-ovhsms // The name of the notifications
host_notification_commands notify-host-by-ovhsms

}

7.35.2 2. you need to go to your commands file which is in /etc/shinken/commands/

And add these line at the end.

Notify Service by SMS-OVH
define command {

command_name notify-service-by-ovhsms // Should be the same as in the contacts.cfg
command_line $PLUGINSDIR$/ovhsms.sh $CONTACTPAGER$ $NOTIFICATIONTYPE$ $SERVICEDESC$ $HOSTNAME$ SE // Tell which script shinken as to use to send sms. We will create it after.

}

Notify host by SMS-OVH
define command {

command_name notify-host-by-ovhsms * * Should be the same as in the contacts.cfg
command_line $PLUGINSDIR$/ovhsms.sh $CONTACTPAGER$ $NOTIFICATIONTYPE$ $SERVICEDESC$ $HOSTNAME$ SER // Tell which script shinken as to use to send sms. We will create it after.

}

7.35.3 3. Add the script

First you need to be the shinken user so do a : su shinken do a : cd /var/lib/shinken/libexec/ and then create and edit
your new script with the name you set above : nano -w ovhsms.sh

#!/bin/bash

date > ~/datesms

NOTIFICATIONTYPE=$2
HOSTALIAS=$3
SERVICEDESC=$4
SERVICESTATE=$5
textesms="**"$NOTIFICATIONTYPE" alerte - "$HOSTALIAS"/"$SERVICEDESC" is "$SERVICESTATE" **" // This is the message who will be send. You can add something if you want.

7.35. Send sms by gateway 227

Shinken Documentation, Release 2.4

wget -o ~/logenvoisms -O ~/response "https://www.ovh.com/cgi-bin/sms/http2sms.cgi?smsAccount=sms-XXXXXXXX-1&login=XXXXXXXX&password=XXXXXXXX&from=XXXXXXXXXXX&to=$1&contentType=text/xml&message=$textesms" // This is the command who will send the sms. You need to adapt it with you gateway settings.

exit 0

7.35.4 4. Test It

Save your file and do : “exit” To exit the shinken user. Then set down one of your host or service to test if you receive
it.

7.36 Triggers

Warning: This is currently in Beta. DO NOT use in production.

7.36.1 Define and use triggers

A trigger object is something that can be called after a “change” on an object. It’s a bit like Zabbix trigger, and should
be used only if you need it. In most cases, direct check is easier to setup :)

Here is an example that will raise a critical check if the CPU is too loaded:

Note: If your trigger is made to edit output add the trigger_broker_raise_enabled parameter into the service definition.
If not, Shinken will generate 2 broks (1 before and 1 after the trigger). This can lead to bad data in broker module
(Graphite)

define service{
use local-service ; Name of service template to use
host_name localhost
service_description Current Load trigger
check_command check_local_load!5.0,4.0,3.0!10.0,6.0,4.0
trigger_name simple_cpu
trigger_broker_raise_enabled 1
}

Then define your trigger in etc/trigger.d/yourtrigger.trig. here the file is simple_cpu.trig

try:

load = perf(self, 'load1')
print "Founded load", load
if load >= 10:

critical(self, 'CRITICAL | load=%d' % load)
elif load >= 5:

warning(self, 'WARNING | load=%d' % load)
else:

ok(self, 'OK | load=%d' % load)
except:

unknown(self, 'UNKNOWN | load=%d' % load)

Finally, add the triggers_dir=trigger.d statement to your shinken.cfg

228 Chapter 7. Advanced Topics

Shinken Documentation, Release 2.4

7.37 Unused nagios parameters

The parameters below are managed in Nagios but not in Shinken because they are useless in the architecture. If you
really need one of them, please use Nagios instead or send us a patch :)

Note: The title is quite ambiguous : a not implemented parameter is different from an unused parameter.

The difference has been done in this page, why about creating a not_implemented_nagios_parameters?

7.37.1 External Command Check Interval (Unused)

Format: command_check_interval=<xxx>[s]
Example: command_check_interval=1

If you specify a number with an “s” appended to it (i.e. 30s), this is the number of seconds to wait between external
command checks. If you leave off the “s”, this is the number of “time units” to wait between external command
checks. Unless you’ve changed the Timing Interval Length value (as defined below) from the default value of 60, this
number will mean minutes.

By setting this value to -1, Nagios will check for external commands as often as possible. Each time Nagios checks
for external commands it will read and process all commands present in the External Command File before continuing
on with its other duties. More information on external commands can be found here.

7.37.2 External Command Buffer Slots (Not implemented)

Format: external_command_buffer_slots=<#>
Example: external_command_buffer_slots=512

This is an advanced feature.

This option determines how many buffer slots Nagios will reserve for caching external commands that have been read
from the external command file by a worker thread, but have not yet been processed by the main thread of the Nagios
deamon. Each slot can hold one external command, so this option essentially determines how many commands can
be buffered. For installations where you process a large number of passive checks (e.g. distributed setups), you may
need to increase this number. You should consider using MRTG to graph Nagios’ usage of external command buffers.

7.37.3 Use Retained Program State Option (Not implemented)

Format: use_retained_program_state=<0/1>
Example: use_retained_program_state=1

This setting determines whether or not Nagios will set various program-wide state variables based on the values saved
in the retention file. Some of these program-wide state variables that are normally saved across program restarts if state
retention is enabled include the Notifications Option, Flap Detection Option, Event Handler Option, Service Check
Execution Option, and Passive Service Check Acceptance Option !!!!!!!!!! options. If you do not have State Retention
Option enabled, this option has no effect.

• 0 = Don’t use retained program state

• 1 = Use retained program state (default)

7.37. Unused nagios parameters 229

Shinken Documentation, Release 2.4

7.37.4 Use Retained Scheduling Info Option (Not implemented)

Format: use_retained_scheduling_info=<0/1>
Example: use_retained_scheduling_info=1

This setting determines whether or not Nagios will retain scheduling info (next check times) for hosts and services
when it restarts. If you are adding a large number (or percentage) of hosts and services, I would recommend disabling
this option when you first restart Nagios, as it can adversely skew the spread of initial checks. Otherwise you will
probably want to leave it enabled.

• 0 = Don’t use retained scheduling info

• 1 = Use retained scheduling info (default)

7.37.5 Retained Host and Service Attribute Masks (Not implemented)

Format: retained_host_attribute_mask=<number>
retained_service_attribute_mask=<number>

Example: retained_host_attribute_mask=0
retained_service_attribute_mask=0

This is an advanced feature. You’ll need to read the Nagios source code to use this option effectively.

These options determine which host or service attributes are NOT retained across program restarts. The values for
these options are a bitwise AND of values specified by the “MODATTR_” definitions in the “include/common.h”
source code file. By default, all host and service attributes are retained.

7.37.6 Retained Process Attribute Masks (Not implemented)

Format: retained_process_host_attribute_mask=<number>
retained_process_service_attribute_mask=<number>

Exam-
ple:

retained_process_host_attribute_mask=0
retained_process_service_attribute_mask=0

This is an advanced feature. You’ll need to read the Nagios source code to use this option effectively.

These options determine which process attributes are NOT retained across program restarts. There are two masks
because there are often separate host and service process attributes that can be changed. For example, host checks
can be disabled at the program level, while service checks are still enabled. The values for these options are a bitwise
AND of values specified by the “MODATTR_” definitions in the “include/common.h” source code file. By default,
all process attributes are retained.

7.37.7 Retained Contact Attribute Masks (Not implemented)

Format: retained_contact_host_attribute_mask=<number>
retained_contact_service_attribute_mask=<number>

Exam-
ple:

retained_contact_host_attribute_mask=0i
retained_contact_service_attribute_mask=0

This is an advanced feature. You’ll need to read the Nagios source code to use this option effectively.

These options determine which contact attributes are NOT retained across program restarts. There are two masks
because there are often separate host and service contact attributes that can be changed. The values for these options
are a bitwise AND of values specified by the “MODATTR_” definitions in the “include/common.h” source code file.
By default, all process attributes are retained.

230 Chapter 7. Advanced Topics

Shinken Documentation, Release 2.4

7.37.8 Service Inter-Check Delay Method (Unused)

Format: service_inter_check_delay_method=<n/d/s/x.xx>
Example: service_inter_check_delay_method=s

This option allows you to control how service checks are initially “spread out” in the event queue. Using a “smart”
delay calculation (the default) will cause Nagios to calculate an average check interval and spread initial checks of
all services out over that interval, thereby helping to eliminate CPU load spikes. Using no delay is generally not
recommended, as it will cause all service checks to be scheduled for execution at the same time. This means that
you will generally have large CPU spikes when the services are all executed in parallel. More information on how to
estimate how the inter-check delay affects service check scheduling can be found here. Values are as follows:

• n = Don’t use any delay - schedule all service checks to run immediately (i.e. at the same time!)

• d = Use a “dumb” delay of 1 second between service checks

• s = Use a “smart” delay calculation to spread service checks out evenly (default)

• x.xx = Use a user-supplied inter-check delay of x.xx seconds

7.37.9 Inter-Check Sleep Time (Unused)

Format: sleep_time=<seconds>
Example: sleep_time=1

This is the number of seconds that Nagios will sleep before checking to see if the next service or host check in the
scheduling queue should be executed. Note that Nagios will only sleep after it “catches up” with queued service checks
that have fallen behind.

7.37.10 Service Interleave Factor (Unused)

Format: service_interleave_factor=<s/x>
Example: service_interleave_factor=s

This variable determines how service checks are interleaved. Interleaving allows for a more even distribution of service
checks, reduced load on remote hosts, and faster overall detection of host problems. Setting this value to 1 is equivalent
to not interleaving the service checks (this is how versions of Nagios previous to 0.0.5 worked). Set this value to s
(smart) for automatic calculation of the interleave factor unless you have a specific reason to change it. The best way
to understand how interleaving works is to watch the status CGI (detailed view) when Nagios is just starting. You
should see that the service check results are spread out as they begin to appear. More information on how interleaving
works can be found here.

• x = A number greater than or equal to 1 that specifies the interleave factor to use. An interleave factor of 1 is
equivalent to not interleaving the service checks.

• s = Use a “smart” interleave factor calculation (default)

7.37.11 Maximum Concurrent Service Checks (Unused)

Format: max_concurrent_checks=<max_checks>
Example: max_concurrent_checks=20

This option allows you to specify the maximum number of service checks that can be run in parallel at any given time.
Specifying a value of 1 for this variable essentially prevents any service checks from being run in parallel. Specifying
a value of 0 (the default) does not place any restrictions on the number of concurrent checks. You’ll have to modify
this value based on the system resources you have available on the machine that runs Nagios, as it directly affects the

7.37. Unused nagios parameters 231

Shinken Documentation, Release 2.4

maximum load that will be imposed on the system (processor utilization, memory, etc.). More information on how to
estimate how many concurrent checks you should allow can be found here.

7.37.12 Check Result Reaper Frequency (Unused)

Format: check_result_reaper_frequency=<frequency_in_seconds>
Example: check_result_reaper_frequency=5

This option allows you to control the frequency in seconds of check result “reaper” events. “Reaper” events process
the results from host and service checks that have finished executing. These events consitute the core of the monitoring
logic in Nagios.

7.37.13 Maximum Check Result Reaper Time

Note: Is it Unused or Not Implemeted??

Format: max_check_result_reaper_time=<seconds>
Example: max_check_result_reaper_time=30

This option allows you to control the maximum amount of time in seconds that host and service check result “reaper”
events are allowed to run. “Reaper” events process the results from host and service checks that have finished exe-
cuting. If there are a lot of results to process, reaper events may take a long time to finish, which might delay timely
execution of new host and service checks. This variable allows you to limit the amount of time that an individual
reaper event will run before it hands control back over to Nagios for other portions of the monitoring logic.

7.37.14 Check Result Path (Unused)

Format: check_result_path=<path>
Example: check_result_path=/var/spool/nagios/checkresults

This options determines which directory Nagios will use to temporarily store host and service check results before
they are processed. This directory should not be used to store any other files, as Nagios will periodically clean this
directory of old file (see the :ref:Max Check Result File Age option above for more information).

Make sure that only a single instance of Nagios has access to the check result path. If multiple instances of Nagios
have their check result path set to the same directory, you will run into problems with check results being processed
(incorrectly) by the wrong instance of Nagios!

7.37.15 Max Check Result File Age (Unused)

Format: max_check_result_file_age=<seconds>
Example: max_check_result_file_age=3600

This options determines the maximum age in seconds that Nagios will consider check result files found in the
check_result_path directory to be valid. Check result files that are older that this threshold will be deleted by Na-
gios and the check results they contain will not be processed. By using a value of zero (0) with this option, Nagios
will process all check result files - even if they’re older than your hardware :-).

232 Chapter 7. Advanced Topics

Shinken Documentation, Release 2.4

7.37.16 Host Inter-Check Delay Method (Unused)

Format: host_inter_check_delay_method=<n/d/s/x.xx>
Example: host_inter_check_delay_method=s

This option allows you to control how host checks that are scheduled to be checked on a regular basis are initially
“spread out” in the event queue. Using a “smart” delay calculation (the default) will cause Nagios to calculate an
average check interval and spread initial checks of all hosts out over that interval, thereby helping to eliminate CPU
load spikes. Using no delay is generally not recommended. Using no delay will cause all host checks to be scheduled
for execution at the same time. More information on how to estimate how the inter-check delay affects host check
scheduling can be found here. Values are as follows:

• n = Don’t use any delay - schedule all host checks to run immediately (i.e. at the same time!)

• d = Use a “dumb” delay of 1 second between host checks

• s = Use a “smart” delay calculation to spread host checks out evenly (default)

• x.xx = Use a user-supplied inter-check delay of x.xx seconds

7.37.17 Auto-Rescheduling Option (Not implemented)

Format: auto_reschedule_checks=<0/1>
Example: auto_reschedule_checks=1

This option determines whether or not Nagios will attempt to automatically reschedule active host and service checks
to “smooth” them out over time. This can help to balance the load on the monitoring server, as it will attempt to keep
the time between consecutive checks consistent, at the expense of executing checks on a more rigid schedule.

THIS IS AN EXPERIMENTAL FEATURE AND MAY BE REMOVED IN FUTURE VERSIONS. ENABLING THIS
OPTION CAN DEGRADE PERFORMANCE - RATHER THAN INCREASE IT - IF USED IMPROPERLY!

7.37.18 Auto-Rescheduling Interval (Not implemented)

Format: auto_rescheduling_interval=<seconds>
Example: auto_rescheduling_interval=30

This option determines how often (in seconds) Nagios will attempt to automatically reschedule checks. This option
only has an effect if the Auto-Rescheduling Option option is enabled. Default is 30 seconds.

THIS IS AN EXPERIMENTAL FEATURE AND MAY BE REMOVED IN FUTURE VERSIONS. ENABLING
THE AUTO-RESCHEDULING OPTION CAN DEGRADE PERFORMANCE - RATHER THAN INCREASE IT -
IF USED IMPROPERLY!

7.37.19 Auto-Rescheduling Window (Not implemented)

Format: auto_rescheduling_window=<seconds>
Example: auto_rescheduling_window=180

This option determines the “window” of time (in seconds) that Nagios will look at when automatically rescheduling
checks. Only host and service checks that occur in the next X seconds (determined by this variable) will be resched-
uled. This option only has an effect if the Auto-Rescheduling Option option is enabled. Default is 180 seconds (3
minutes).

7.37. Unused nagios parameters 233

Shinken Documentation, Release 2.4

THIS IS AN EXPERIMENTAL FEATURE AND MAY BE REMOVED IN FUTURE VERSIONS. ENABLING
THE AUTO-RESCHEDULING OPTION CAN DEGRADE PERFORMANCE - RATHER THAN INCREASE IT -
IF USED IMPROPERLY!

7.37.20 Translate Passive Host Checks Option (Not implemented)

Format: translate_passive_host_checks=<0/1>
Example: translate_passive_host_checks=1

This option determines whether or not Nagios will translate DOWN/UNREACHABLE passive host check results to
their “correct” state from the viewpoint of the local Nagios instance. This can be very useful in distributed and failover
monitoring installations. More information on passive check state translation can be found here.

• 0 = Disable check translation (default)

• 1 = Enable check translation

7.37.21 Child Process Memory Option (Unused)

Format: free_child_process_memory=<0/1>
Example: free_child_process_memory=0

This option determines whether or not Nagios will free memory in child processes when they are fork()ed off from
the main process. By default, Nagios frees memory. However, if the use_large_installation_tweaks option is enabled,
it will not. By defining this option in your configuration file, you are able to override things to get the behavior you
want.

• 0 = Don’t free memory

• 1 = Free memory

7.37.22 Child Processes Fork Twice (Unused)

Format: child_processes_fork_twice=<0/1>
Example: child_processes_fork_twice=0

This option determines whether or not Nagios will fork() child processes twice when it executes host and service
checks. By default, Nagios fork()s twice. However, if the use_large_installation_tweaks option is enabled, it will only
fork() once. By defining this option in your configuration file, you are able to override things to get the behavior you
want.

• 0 = Fork() just once

• 1 = Fork() twice

7.37.23 Event Broker Options (Unused)

Format: event_broker_options=<#>
Example: event_broker_options=-1

This option controls what (if any) data gets sent to the event broker and, in turn, to any loaded event broker modules.
This is an advanced option. When in doubt, either broker nothing (if not using event broker modules) or broker
everything (if using event broker modules). Possible values are shown below.

• 0 = Broker nothing

234 Chapter 7. Advanced Topics

Shinken Documentation, Release 2.4

• -1 = Broker everything

• # = See BROKER_* definitions in source code (“include/broker.h”) for other values that can be OR’ed together

7.37.24 Event Broker Modules (Unused)

Format: broker_module=<modulepath> [moduleargs]
Example: broker_module=/usr/local/nagios/bin/ndomod.o cfg_file=/usr/local/nagios/etc/ndomod.cfg

This directive is used to specify an event broker module that should by loaded by Nagios at startup. Use multiple
directives if you want to load more than one module. Arguments that should be passed to the module at startup are
separated from the module path by a space.

Do NOT overwrite modules while they are being used by Nagios or Nagios will crash in a fiery display of SEGFAULT
glory. This is a bug/limitation either in “dlopen()”, the kernel, and/or the filesystem. And maybe Nagios...

The correct/safe way of updating a module is by using one of these methods:

• Shutdown Nagios, replace the module file, restart Nagios

• While Nagios is running... delete the original module file, move the new module file into place, restart Nagios

7.37.25 Debug File (Unused)

Format: debug_file=<file_name>
Example: debug_file=/usr/local/nagios/var/nagios.debug

This option determines where Nagios should write debugging information. What (if any) information is written is
determined by the Debug Level and Debug Verbosity options. You can have Nagios automaticaly rotate the debug file
when it reaches a certain size by using the Maximum Debug File Size option.

7.37.26 Debug Level (Unused)

Format: debug_level=<#>
Example: debug_level=24

This option determines what type of information Nagios should write to the Debug File. This value is a logical OR of
the values below.

• -1 = Log everything

• 0 = Log nothing (default)

• 1 = Function enter/exit information

• 2 = Config information

• 4 = Process information

• 8 = Scheduled event information

• 16 = Host/service check information

• 32 = Notification information

• 64 = Event broker information

7.37. Unused nagios parameters 235

Shinken Documentation, Release 2.4

7.37.27 Debug Verbosity (Unused)

Format: debug_verbosity=<#>
Example: debug_verbosity=1

This option determines how much debugging information Nagios should write to the Debug File.

• 0 = Basic information

• 1 = More detailed information (default)

• 2 = Highly detailed information

7.37.28 Maximum Debug File Size (Unused)

Format: max_debug_file_size=<#>
Example: max_debug_file_size=1000000

This option determines the maximum size (in bytes) of the debug file. If the file grows larger than this size, it will be
renamed with a .old extension. If a file already exists with a .old extension it will automatically be deleted. This helps
ensure your disk space usage doesn’t get out of control when debugging Nagios.

7.38 Advanced discovery with Shinken

Important: This topic assumes you have read and understood simple discovery with Shinken.

7.38.1 How the discovery script works

Did you like the discovery script? Now it’s time to look at how it works, and get even more from it.

The discovery is done in two distinct phases:

• the discovery script runs generate raw data

• the discovery rules use this data to generate objects like hosts or services

7.38.2 Discovery scripts

A discovery script can be anything you can launch from a shell, just like plugins. As mentioned their main goal is to
generate raw data for objects. Yes, it can be open ports of a server, or the number of wheels your car has, as you want.
:)

The raw data is being sent to standard out.

Here is an example of the output of the nmap script for a standard Linux box:

$ libexec/nmap_discovery_runner.py -t localhost

localhost::isup=1
localhost::os=linux
localhost::osversion=2.6.X
localhost::macvendor=
localhost::openports=22,80,1521,3306,5432,5666,6502,8080,50000

236 Chapter 7. Advanced Topics

Shinken Documentation, Release 2.4

localhost::fqdn=localhost
localhost::ip=127.0.0.1

So the output format is:

objectname::key=value

If there are multiple values, like here for open ports, they are separated by commas “’‘,’‘”.

The discovery script definitions (like nmap or vmware used by default) are located in the file
‘’/etc/shinken/discovery_runs.cfg’‘.

7.38.3 Discovery rules

Without rules, the raw data that is being generated by the discovery scripts is useless. The rules are defined in the
‘’/etc/shinken/discovery_rules.cfg” file.

Host rule

Here is an example of how to create a “generic” host for anything that is detected by nmap and answers to a ping
request:

define discoveryrule {
discoveryrule_name HostGeneric
creation_type host

isup 1

use generic-host
}

There are three main parts for a rule:

• ‘’discoveryrule_name” and ‘’creation_type” parameter. The first one should be unique, and the second can
be ‘host’ or ‘service’ (default). More types will be added in the future.

• ‘’isup’‘: refers the key name that will be looked up in the raw data from the discovery scripts. It’s value
(here 1) will be used for a comparison. If all key/values pairs are good, the rule is valid, and will be applied.

• ‘’use’‘: This mentions the template from which the generated object will inherit from. You can add as
many properties as you want.

Service rule

Here is an example for a port matching rule service creation:

define discoveryrule {
discoveryrule_name Ftp

openports ^21$

check_command check_ftp
service_description Ftp
use generic-service

}

7.38. Advanced discovery with Shinken 237

Shinken Documentation, Release 2.4

Here, if the port 21 is open. The ^and $ is for the regexp thing, so 21 and only 21 will be match, and not 210 for
example.

The service generated will be with FTP for the host_name the object_name send by the discovery script, the
check_command check_ftp and it will use the generic-service template.

The ! (not) key

You can ask not to match a rule. It’s very easy, just add a ! character before the key name.

For example:

define discoveryrule {
discoveryrule_name Ftp

openports ^21$
!os linux

check_command check_ftp
service_description Ftp
use generic-service

}

This will create the Ftp service for all hosts that have port 21 open, but not for the linux ones.

Add something instead of replace

By default, when you put a new host/service property, it will replace all previously detected values. For some properties
like templates or groups, this is not a good idea. That’s why you can say a property should be “added” by using the
character “+” before it.

For example, we want to add the “ftp” and “http” templates on the host, without removing all previously inserted
values.

define discoveryrule {
discoveryrule_name Ftp
creation_type host
openports ^21$
+use ftp

}

define discoveryrule {
discoveryrule_name Http
creation_type host
openports ^21$
+use http

}

If both ports are open, it will create a host with:

define host {
host_name localhost
use ftp,http

}

Important: The rules order is important, here ftp apply before http. So put the “generic” template at the end of you
rules file.

238 Chapter 7. Advanced Topics

Shinken Documentation, Release 2.4

Important: Why is the rule order important, explain the impact.

Delete something after add

Sometimes you need to simply remove a property that conflicts with a new one. For example, some routers are derived
from linux system but does not work with the linux template. That’s why you can say a property should be “remove”
by using the character “-” before it.

For example we want to add the “router-os” template but not the “linux” template on the host and do not remove
previously inserted values.

define discoveryrule {
discoveryrule_name Ftp
creation_type host
openports ^21$
+use ftp

}

define discoveryrule {
discoveryrule_name Http
creation_type host
openports ^21$
+use http

}

define discoveryrule {
discoveryrule_name Linux
creation_type host
os linux
+use linux

}

define discoveryrule {
discoveryrule_name RouterOS
creation_type host
macvendor routerboard
+use router-os
-use linux

}

If both ports are open, os detected is linux and the macvendor is routerboard it will create a host with:

define host {
host_name myrouter
use ftp,http,router-os

}

7.39 Discovery with Shinken

7.39.1 DEPRATATION WARNING

BEWARE: The discovery part is depracted in the 2.4 version, and will be moved to a module in the next versions.

7.39. Discovery with Shinken 239

Shinken Documentation, Release 2.4

7.39.2 Simple use of the discovery tool

When Shinken is installed, the discovery script shinken-discovery can help you start your new monitoring tool and
integrate a large number of hosts. This does not replace extracting data from an authoritative CMDB/IT reference for
provisioning known hosts. It can be used to supplement the data from the authoritative references.

At this time, two “discovery” modules are available:

• Network based discovery using nmap

• VMware based discovery, using the check_esx3.pl script communicating with a vCenter installation.

It is suggested to execute both discovery modules in one pass, because one module can use data from the other.

Setup nmap discovery

The network discovery scans your network and sets up a basic monitoring configuration for all your hosts and network
services. It uses the nmap tool.

Ubuntu:

sudo apt-get install nmap

RedHat/Centos:

yum install nmap

Windows: Not available at this time.

You need to setup the nmap targets in the file /etc/shinken/resource.d/nmap.cfg: For nmap:

$NMAPTARGETS$=localhost www.google.fr 192.168.0.1-254

This will scan the localhost, one of the numerous Google server and your LAN. Change it to your own LAN values of
course!

Tip: This value can be changed without modifying this file with the -m discovery script argument

Setup the VMware part

Tip: Of course, if you do not have a vCenter installation, skip this part ...

You will need the check_esx3.pl script. You can get it at http://www.op5.org/community/plugin-inventory/op5-
projects/op5-plugins and install it in your standard plugin directory (should be /var/lib/plugins/nagios by default).

You need to setup vcenter acces in the file /etc/shinken/resource.d/vmware.cfg: Enter your server and credential (can
be an account domain)

$VCENTER$=vcenter.mydomain.com
$VCENTERLOGIN$=someuser
$VCENTERPASSWORD$=somepassowrd

Launch it!

Now, you are ready to run the discovery tool:

240 Chapter 7. Advanced Topics

http://www.op5.org/community/plugin-inventory/op5-projects/op5-plugins
http://www.op5.org/community/plugin-inventory/op5-projects/op5-plugins

Shinken Documentation, Release 2.4

This call will create hosts and services for nmap and vmware (vsphere) scripts in the /etc/shinken/discovery/discovery
directory.

sudo shinken-discovery -o /etc/shinken/objects/discovery -r nmap,vsphere

If you are lazy and do not want to edit the resource file, you can set macros with the -m arguments:

sudo shinken-discovery -o /etc/shinken/objects/discovery -r nmap -m "NMAPTARGETS=192.168.0.1-254 localhost 192.168.0.1-254"

You can set several macros, just put them on the same -m argument, separated by a comma (,).

Tip: The scan can take quite a few minutes if you are scanning a large network, you can go have a coffee. The scan
timeout is set to 60 minutes.

Restart Shinken

Once the scan is completed, you can restart Shinken and enjoy your new hosts and services:

sudo /etc/init.d/shinken restart

7.39.3 More about discovery

If you want to know more about the discovery process, like how to create a discovery script or define creation rules,
consult the advanced discovery documentation.

7.39. Discovery with Shinken 241

Shinken Documentation, Release 2.4

242 Chapter 7. Advanced Topics

CHAPTER 8

Config

243

Shinken Documentation, Release 2.4

8.1 Host Definition

8.1.1 Description

A host definition is used to define a physical server, workstation, device, etc. that resides on your network.

8.1.2 Definition Format

Bold directives are required, while the others are optional.

define host{
host_name *host_name*
alias alias
display_name display_name
address *address*
parents host_names
hostgroups hostgroup_names
check_command command_name
initial_state [o,d,u]
max_check_attempts #
check_interval #
retry_interval #
active_checks_enabled [0/1]
passive_checks_enabled [0/1]
check_period timeperiod_name
obsess_over_host [0/1]
check_freshness [0/1]
freshness_threshold #
event_handler command_name
event_handler_enabled [0/1]

low_flap_threshold #
high_flap_threshold #
flap_detection_enabled [0/1]
flap_detection_options [o,d,u]
process_perf_data [0/1]
retain_status_information [0/1]
retain_nonstatus_information [0/1]
contacts *contacts*
contact_groups *contact_groups*
notification_interval #
first_notification_delay #
notification_period *timeperiod_name*
notification_options [d,u,r,f,s]
notifications_enabled [0/1]
stalking_options [o,d,u]
notes note_string
notes_url url
action_url url
icon_image image_file
icon_image_alt alt_string

Continued on next page

244 Chapter 8. Config

Shinken Documentation, Release 2.4

Table 8.1 – continued from previous page
vrml_image image_file
statusmap_image image_file
2d_coords x_coord,y_coord
3d_coords x_coord,y_coord,z_coord
realm realm
poller_tag poller_tag
reactionner_tag reactionner_tag
business_impact [0/1/2/3/4/5]
resultmodulations resultmodulations
escalations escalations names
business_impact_modulations business_impact_modulations names
icon_set [database/disk/network_service/server/...]
maintenance_period timeperiod_name
service_overrides service_description,directive value
service_excludes service_description,...
service_includes service_description,...
labels labels
business_rule_output_template template
business_rule_smart_notifications [0/1]
business_rule_downtime_as_ack [0/1]
business_rule_host_notification_options [d,u,r,f,s]
business_rule_service_notification_options [w,u,c,r,f,s]
snapshot_enabled [0/1]
snapshot_command command_name
snapshot_period timeperiod_name
snapshot_criteria [d,u]
snapshot_interval #
trigger_name trigger_name
trigger_broker_raise_enabled [0/1]
}

8.1.3 Example Definition

define host{
host_name bogus-router
alias Bogus Router #1
address 192.168.1.254
parents server-backbone
check_command check-host-alive
check_interval 5
retry_interval 1
max_check_attempts 5
check_period 24x7
process_perf_data 0
retain_nonstatus_information 0
contact_groups router-admins
notification_interval 30
notification_period 24x7
notification_options d,u,r
realm Europe
poller_tag DMZ
icon_set server

8.1. Host Definition 245

Shinken Documentation, Release 2.4

}

8.1.4 Directive Descriptions

host_name This directive is used to define a short name used to identify the host. It is used in host group and service
definitions to reference this particular host. Hosts can have multiple services (which are monitored) associated
with them. When used properly, the $HOSTNAME$ macro will contain this short name.

alias This directive is used to define a longer name or description used to identify the host. It is provided in order to
allow you to more easily identify a particular host. When used properly, the $HOSTALIAS$ macro will contain
this alias/description.

address This directive is used to define the address of the host. Normally, this is an IP address, although it could
really be anything you want (so long as it can be used to check the status of the host). You can use a FQDN
to identify the host instead of an IP address, but if “DNS” services are not available this could cause problems.
When used properly, the $HOSTADDRESS$ macro will contain this address.

If you do not specify an address directive in a host definition, the name of the host will be used as its address.

A word of caution about doing this, however - if “DNS” fails, most of your service checks will fail because the
plugins will be unable to resolve the host name.

display_name This directive is used to define an alternate name that should be displayed in the web interface for this
host. If not specified, this defaults to the value you specify for the host_name directive.

parents This directive is used to define a comma-delimited list of short names of the “parent” hosts for this particular
host. Parent hosts are typically routers, switches, firewalls, etc. that lie between the monitoring host and a
remote hosts. A router, switch, etc. which is closest to the remote host is considered to be that host’s “parent”.
Read the “Determining Status and Reachability of Network Hosts” document located here for more information.
If this host is on the same network segment as the host doing the monitoring (without any intermediate routers,
etc.) the host is considered to be on the local network and will not have a parent host. Leave this value blank if
the host does not have a parent host (i.e. it is on the same segment as the Shinken host). The order in which you
specify parent hosts has no effect on how things are monitored.

hostgroups This directive is used to identify the short name(s) of the hostgroup(s) that the host belongs to. Multiple
hostgroups should be separated by commas. This directive may be used as an alternative to (or in addition to)
using the members directive in hostgroup definitions.

check_command This directive is used to specify the short name of the command that should be used to check if the
host is up or down. Typically, this command would try and ping the host to see if it is “alive”. The command
must return a status of OK (0) or Shinken will assume the host is down. If you leave this argument blank, the
host will not be actively checked. Thus, Shinken will likely always assume the host is up (it may show up as
being in a “PENDING” state in the web interface). This is useful if you are monitoring printers or other devices
that are frequently turned off. The maximum amount of time that the notification command can run is controlled
by the host_check_timeout option.

initial_state By default Shinken will assume that all hosts are in UP states when in starts. You can override the initial
state for a host by using this directive. Valid options are: o = UP, d = DOWN, and u = UNREACHABLE.

max_check_attempts This directive is used to define the number of times that Shinken will retry the host check
command if it returns any state other than an OK state. Setting this value to 1 will cause Shinken to generate an
alert without retrying the host check again.

If you do not want to check the status of the host, you must still set this to a minimum value of 1. To bypass the
host check, just leave the “check_command” option blank.

check_interval This directive is used to define the number of “time units” between regularly scheduled checks of the
host. Unless you’ve changed the interval_length directive from the default value of 60, this number will mean

246 Chapter 8. Config

Shinken Documentation, Release 2.4

minutes. More information on this value can be found in the check scheduling documentation.

retry_interval This directive is used to define the number of “time units” to wait before scheduling a re-check of
the hosts. Hosts are rescheduled at the retry interval when they have changed to a non-UP state. Once the host
has been retried max_check_attempts times without a change in its status, it will revert to being scheduled at
its “normal” rate as defined by the check_interval value. Unless you’ve changed the interval_length directive
from the default value of 60, this number will mean minutes. More information on this value can be found in
the check cheduling documentation.

active_checks_enabled This directive is used to determine whether or not active checks (either regularly scheduled
or on-demand) of this host are enabled. Values: 0 = disable active host checks, 1 = enable active host checks.

passive_checks_enabled This directive is used to determine whether or not passive checks are enabled for this host.
Values: 0 = disable passive host checks, 1 = enable passive host checks.

check_period This directive is used to specify the short name of the time period during which active checks of this
host can be made.

obsess_over_host This directive determines whether or not checks for the host will be “obsessed” over using the
ochp_command.

check_freshness This directive is used to determine whether or not freshness checks are enabled for this host. Values:
0 = disable freshness checks, 1 = enable freshness checks.

freshness_threshold This directive is used to specify the freshness threshold (in seconds) for this host. If you set this
directive to a value of 0, Shinken will determine a freshness threshold to use automatically.

event_handler This directive is used to specify the short name of the command that should be run whenever a change
in the state of the host is detected (i.e. whenever it goes down or recovers). Read the documentation on event
handlers for a more detailed explanation of how to write scripts for handling events. The maximum amount of
time that the event handler command can run is controlled by the event_handler_timeout option.

event_handler_enabled This directive is used to determine whether or not the event handler for this host is enabled.
Values: 0 = disable host event handler, 1 = enable host event handler.

low_flap_threshold This directive is used to specify the low state change threshold used in flap detection for this host.
More information on flap detection can be found here. If you set this directive to a value of 0, the program-wide
value specified by the low_host_flap_threshold directive will be used.

high_flap_threshold This directive is used to specify the high state change threshold used in flap detection for this
host. More information on flap detection can be found here. If you set this directive to a value of 0, the program-
wide value specified by the high_host_flap_threshold directive will be used.

flap_detection_enabled This directive is used to determine whether or not flap detection is enabled for this host.
More information on flap detection can be found here. Values: 0 = disable host flap detection, 1 = enable host
flap detection.

flap_detection_options This directive is used to determine what host states the flap detection logic will use for this
host. Valid options are a combination of one or more of the following: o = UP states, d = DOWN states, u =
UNREACHABLE states.

process_perf_data This directive is used to determine whether or not the processing of performance data is enabled
for this host. Values: 0 = disable performance data processing, 1 = enable performance data processing.

retain_status_information This directive is used to determine whether or not status-related information about the
host is retained across program restarts. This is only useful if you have enabled state retention using the re-
tain_state_information directive. Value: 0 = disable status information retention, 1 = enable status information
retention.

retain_nonstatus_information This directive is used to determine whether or not non-status information about the
host is retained across program restarts. This is only useful if you have enabled state retention using the re-

8.1. Host Definition 247

Shinken Documentation, Release 2.4

tain_state_information directive. Value: 0 = disable non-status information retention, 1 = enable non-status
information retention.

contacts This is a list of the short names of the contacts that should be notified whenever there are problems (or
recoveries) with this host. Multiple contacts should be separated by commas. Useful if you want notifications
to go to just a few people and don’t want to configure contact groups. You must specify at least one contact or
contact group in each host definition.

contact_groups This is a list of the short names of the contact groups that should be notified whenever there are
problems (or recoveries) with this host. Multiple contact groups should be separated by commas. You must
specify at least one contact or contact group in each host definition.

notification_interval This directive is used to define the number of “time units” to wait before re-notifying a contact
that this service is still down or unreachable. Unless you’ve changed the interval_length directive from the
default value of 60, this number will mean minutes. If you set this value to 0, Shinken will not re-notify contacts
about problems for this host - only one problem notification will be sent out.

first_notification_delay This directive is used to define the number of “time units” to wait before sending out the first
problem notification when this host enters a non-UP state. Unless you’ve changed the interval_length directive
from the default value of 60, this number will mean minutes. If you set this value to 0, Shinken will start sending
out notifications immediately.

notification_period This directive is used to specify the short name of the time period during which notifications of
events for this host can be sent out to contacts. If a host goes down, becomes unreachable, or recoveries during
a time which is not covered by the time period, no notifications will be sent out.

notification_options This directive is used to determine when notifications for the host should be sent out. Valid
options are a combination of one or more of the following: d = send notifications on a DOWN state, u = send
notifications on an UNREACHABLE state, r = send notifications on recoveries (OK state), f = send notifications
when the host starts and stops flapping, and s = send notifications when scheduled downtime starts and ends. If
you specify n (none) as an option, no host notifications will be sent out. If you do not specify any notification
options, Shinken will assume that you want notifications to be sent out for all possible states.

If you specify d,r in this field, notifications will only be sent out when the host goes DOWN and when it recovers
from a DOWN state.

notifications_enabled This directive is used to determine whether or not notifications for this host are enabled. Val-
ues: 0 = disable host notifications, 1 = enable host notifications.

stalking_options This directive determines which host states “stalking” is enabled for. Valid options are a combi-
nation of one or more of the following: o = stalk on UP states, d = stalk on DOWN states, and u = stalk on
UNREACHABLE states. More information on state stalking can be found here.

notes This directive is used to define an optional string of notes pertaining to the host. If you specify a note here, you
will see the it in the extended information CGI (when you are viewing information about the specified host).

notes_url This variable is used to define an optional URL that can be used to provide more information about the
host. If you specify an URL, you will see a red folder icon in the CGIs (when you are viewing host information)
that links to the URL you specify here. Any valid URL can be used. If you plan on using relative paths, the base
path will the the same as what is used to access the CGIs (i.e. ///cgi-bin/shinken///). This can be very useful if
you want to make detailed information on the host, emergency contact methods, etc. available to other support
staff.

action_url This directive is used to define one or more optional URL that can be used to provide more actions to
be performed on the host. If you specify an URL, you will see a red “splat” icon in the CGIs (when you are
viewing host information) that links to the URL you specify here. Any valid URL can be used. If you plan on
using relative paths, the base path will the the same as what is used to access the CGIs (i.e. /cgi-bin/shinken/).
Configure multiple action_urls.

248 Chapter 8. Config

Shinken Documentation, Release 2.4

icon_image This variable is used to define the name of a GIF, PNG, or JPG image that should be associated with this
host. This image will be displayed in the various places in the CGIs. The image will look best if it is 40x40
pixels in size. Images for hosts are assumed to be in the logos/ subdirectory in your HTML images directory.

icon_image_alt This variable is used to define an optional string that is used in the ALT tag of the image specified by
the <icon_image> argument.

vrml_image This variable is used to define the name of a GIF, PNG, or JPG image that should be associated with this
host. This image will be used as the texture map for the specified host in the statuswrl CGI. Unlike the image
you use for the <icon_image> variable, this one should probably not have any transparency. If it does, the host
object will look a bit weird. Images for hosts are assumed to be in the logos/ subdirectory in your HTML images
directory.

statusmap_image This variable is used to define the name of an image that should be associated with this host in the
statusmap CGI. You can specify a JPEG, PNG, and GIF image if you want, although I would strongly suggest
using a GD2 format image, as other image formats will result in a lot of wasted CPU time when the statusmap
image is generated. GD2 images can be created from PNG images by using the pngtogd2 utility supplied with
Thomas Boutell’s gd library. The GD2 images should be created in uncompressed format in order to minimize
CPU load when the statusmap CGI is generating the network map image. The image will look best if it is 40x40
pixels in size. You can leave these option blank if you are not using the statusmap CGI. Images for hosts are
assumed to be in the logos/ subdirectory in your HTML images directory.

2d_coords This variable is used to define coordinates to use when drawing the host in the statusmap CGI. Coordinates
should be given in positive integers, as they correspond to physical pixels in the generated image. The origin
for drawing (0,0) is in the upper left hand corner of the image and extends in the positive x direction (to the
right) along the top of the image and in the positive y direction (down) along the left hand side of the image.
For reference, the size of the icons drawn is usually about 40x40 pixels (text takes a little extra space). The
coordinates you specify here are for the upper left hand corner of the host icon that is drawn.

Don’t worry about what the maximum x and y coordinates that you can use are. The CGI will automatically
calculate the maximum dimensions of the image it creates based on the largest x and y coordinates you specify.

3d_coords This variable is used to define coordinates to use when drawing the host in the statuswrl CGI. Coordinates
can be positive or negative real numbers. The origin for drawing is (0.0,0.0,0.0). For reference, the size of the
host cubes drawn is 0.5 units on each side (text takes a little more space). The coordinates you specify here are
used as the center of the host cube.

realm This variable is used to define the realm where the host will be put. By putting the host in a realm, it will be
manage by one of the scheduler of this realm.

poller_tag This variable is used to define the poller_tag of the host. All checks of this hosts will only take by pollers
that have this value in their poller_tags parameter.

By default the pollerag value is ‘None’, so all untagged pollers can take it because None is set by default for
them.

reactionner_tag This variable is used to define the reactionner_tag of notifications_commands from this service. All
of theses notifications will be taken by reactionners that have this value in their reactionner_tags parameter.

By default there is no reactionner_tag, so all untaggued reactionners can take it.

business_impact This variable is used to set the importance we gave to this host for the business from the less
important (0 = nearly nobody will see if it’s in error) to the maximum (5 = you lost your job if it fail). The
default value is 2.

resultmodulations This variable is used to link with resultmodulations objects. It will allow such modulation to
apply, like change a warning in critical for this host.

escalations This variable is used to link with escalations objects. It will allow such escalations rules to appy. Look at
escalations objects for more details.

8.1. Host Definition 249

http://www.boutell.com/gd/

Shinken Documentation, Release 2.4

business_impact_modulations This variable is used to link with business_impact_modulations objects. It will allow
such modulation to apply (for example if the host is a payd server, it will be important only in a specific
timeperiod: near the payd day). Look at business_impact_modulations objects for more details.

icon_set This variable is used to set the icon in the Shinken Webui. For now, values are only : database, disk,
network_service, server

maintenance_period Shinken-specific variable to specify a recurring downtime period. This works like a scheduled
downtime, so unlike a check_period with exclusions, checks will still be made (no “blackout” times). announce-
ment

service_overrides This variable may be used to override services directives for a specific host. This is especially
useful when services are inherited (for instance from packs), because it allows to have a host attached ser-
vice set one of its directives a specific value. For example, on a set of web servers, HTTP service (inherited
from http pack) on production servers should have notifications enabled 24x7, and staging server should only
notify during workhours. To do so, staging server should be set the following directive: service_overrides
HTTP,notification_period workhours. Several overrides may be specified, each override should be written on
a single line. Caution, service_overrides may be inherited (through the use directive), but specifying an override
on a host overloads all values inherited from parent hosts, it does not append it (as of any single valued attribute).
See inheritance description for more details.

service_excludes This variable may be used to exclude a service from a host. It addresses the situations where a set
of serices is inherited from a pack or attached from a hostgroup, and an identified host should NOT have one (or
more, comma separated) services defined. This allows to manage exceptions in the service asignment without
having to define intermediary templates/hostgroups. See inheritance description for more details. This will be
ignored if there is service_includes

service_includes This variable may be used to include only a service from a host. It addresses the situations where
a set of serices is inherited from a pack or attached from a hostgroup, and an identified host should have only
one (or more, comma separated) services defined. This allows to manage exceptions in the service asignment
without having to define intermediary templates/hostgroups. See inheritance description for more details. This
variable is considered before service_excludes

labels This variable may be used to place arbitrary labels (separated by comma character). Those labels may be used
in other configuration objects such as business rules grouping expressions.

business_rule_output_template Classic host check output is managed by the underlying plugin (the check output
is the plugin stdout). For business rules, as there’s no real plugin behind, the output may be controlled by a
template string defined in business_rule_output_template directive.

business_rule_smart_notifications This variable may be used to activate smart notifications on business rules. This
allows to stop sending notification if all underlying problems have been acknowledged.

business_rule_smart_notifications By default, downtimes are not taken into account by business rules smart noti-
fications processing. This variable allows to extend smart notifications to underlying hosts or service checks
under downtime (they are treated as if they were acknowledged).

business_rule_host_notification_options This option allows to enforce business rules underlying hosts notification
options to easily compose a consolidated meta check. This is especially useful for business rules relying on
grouping expansion.

business_rule_service_notification_options This option allows to enforce business rules underlying services notifi-
cation options to easily compose a consolidated meta check. This is especially useful for business rules relying
on grouping expansion.

snapshot_enabled This option allows to enable snapshots snapshots on this element.

snapshot_command Command to launch when a snapshot launch occurs

snapshot_period Timeperiod when the snapshot call is allowed

250 Chapter 8. Config

http://www.mail-archive.com/shinken-devel@lists.sourceforge.net/msg00247.html
http://www.mail-archive.com/shinken-devel@lists.sourceforge.net/msg00247.html

Shinken Documentation, Release 2.4

snapshot_criteria List of states that enable the snapshot launch. Mainly bad states.

snapshot_interval Minimum interval between two launch of snapshots to not hammering the host, in interval_length
units (by default 60s) :)

trigger_name This options define the trigger that will be executed after a check result (passive or active). This file
trigger_name.trig has to exist in the trigger directory or sub-directories.

trigger_broker_raise_enabled This option define the behavior of the defined trigger (Default 0). If set to 1, this
means the trigger will modify the output / return code of the check. If 0, this means the code executed by the
trigger does nothing to the check (compute something elsewhere ?) Basically, if you use one of the predefined
function (trigger_functions.py) set it to 1

8.2 Host Group Definition

8.2.1 Description

A host group definition is used to group one or more hosts together for simplifying configuration with object tricks or
display purposes in the CGIs .

8.2.2 Definition Format

Bold directives are required, while the others are optional.

define hostgroup{
hostgroup_name *hostgroup_name*
alias *alias*
members hosts
hostgroup_members hostgroups
notes note_string
notes_url url
action_url url
realm realm
}

8.2.3 Example Definition

define hostgroup{
hostgroup_name novell-servers
alias Novell Servers
members netware1,netware2,netware3,netware4
realm Europe

}

8.2.4 Directive Descriptions

hostgroup_name This directive is used to define a short name used to identify the host group.

alias This directive is used to define is a longer name or description used to identify the host group. It is provided in
order to allow you to more easily identify a particular host group.

8.2. Host Group Definition 251

Shinken Documentation, Release 2.4

members This is a list of the short names of hosts that should be included in this group. Multiple host names should
be separated by commas. This directive may be used as an alternative to (or in addition to) the hostgroups
directive in host definitions.

hostgroup_members This optional directive can be used to include hosts from other “sub” host groups in this host
group. Specify a comma-delimited list of short names of other host groups whose members should be included
in this group.

notes This directive is used to define an optional string of notes pertaining to the host. If you specify a note here, you
will see the it in the extended information CGI (when you are viewing information about the specified host).

notes_url This variable is used to define an optional URL that can be used to provide more information about the
host group. If you specify an URL, you will see a red folder icon in the CGIs (when you are viewing hostgroup
information) that links to the URL you specify here. Any valid URL can be used. If you plan on using relative
paths, the base path will the the same as what is used to access the CGIs (i.e. ///cgi-bin/nagios///). This can
be very useful if you want to make detailed information on the host group, emergency contact methods, etc.
available to other support staff.

action_url This directive is used to define an optional URL that can be used to provide more actions to be performed
on the host group. If you specify an URL, you will see a red “splat” icon in the CGIs (when you are viewing
hostgroup information) that links to the URL you specify here. Any valid URL can be used. If you plan on using
relative paths, the base path will the the same as what is used to access the CGIs (i.e. ///cgi-bin/shinken///).

realm This directive is used to define in which realm all hosts of this hostgroup will be put into. If the host are already
tagged by a realm (and not the same), the value taken into account will the the one of the host (and a warning
will be raised). If no realm is defined, the default one will be take..

8.3 Service Definition

8.3.1 Description

A service definition is used to identify a “service” that runs on a host. The term “service” is used very loosely. It can
mean an actual service that runs on the host (POP, “SMTP”, “HTTP”, etc.) or some other type of metric associated
with the host (response to a ping, number of logged in users, free disk space, etc.). The different arguments to a service
definition are outlined below.

8.3.2 Definition Format

Bold directives are required, while the others are optional.

define service{
host_name *host_name*
hostgroup_name hostgroup_name
service_description *service_description*
display_name display_name
servicegroups servicegroup_names
is_volatile [0/1]
check_command *command_name*
initial_state [o,w,u,c]
max_check_attempts #
check_interval #
retry_interval #

Continued on next page

252 Chapter 8. Config

Shinken Documentation, Release 2.4

Table 8.2 – continued from previous page
active_checks_enabled [0/1]
passive_checks_enabled [0/1]
check_period *timeperiod_name*
obsess_over_service [0/1]
check_freshness [0/1]
freshness_threshold #
event_handler command_name
event_handler_enabled [0/1]
low_flap_threshold #
high_flap_threshold #
flap_detection_enabled [0/1]
flap_detection_options [o,w,c,u]
process_perf_data [0/1]
retain_status_information [0/1]
retain_nonstatus_information [0/1]
notification_interval #
first_notification_delay #
notification_period *timeperiod_name*
notification_options [w,u,c,r,f,s]
notifications_enabled [0/1]
contacts *contacts*
contact_groups *contact_groups*
stalking_options [o,w,u,c]
notes note_string
notes_url url
action_url url
icon_image image_file
icon_image_alt alt_string

poller_tag poller_tag
reactionner_tag reactionner_tag
duplicate_foreach $MACRO$
service_dependencies host,service_description
business_impact [0/1/2/3/4/5]
icon_set [database/disk/network_service/server]
maintenance_period timeperiod_name
host_dependency_enabled [0/1]
labels labels
business_rule_output_template template
business_rule_smart_notifications [0/1]
business_rule_downtime_as_ack [0/1]
business_rule_host_notification_options [d,u,r,f,s]
business_rule_service_notification_options [w,u,c,r,f,s]
snapshot_enabled [0/1]
snapshot_command command_name
snapshot_period timeperiod_name
snapshot_criteria [w,c,u]
snapshot_interval #
trigger_name trigger_name
trigger_broker_raise_enabled [0/1]
}

8.3. Service Definition 253

Shinken Documentation, Release 2.4

8.3.3 Example Definition

define service{
host_name linux-server
service_description check-disk-sda1
check_command check-disk!/dev/sda1
max_check_attempts 5
check_interval 5
retry_interval 3
check_period 24x7
notification_interval 30
notification_period 24x7
notification_options w,c,r
contact_groups linux-admins
poller_tag DMZ
icon_set server
}

8.3.4 Directive Descriptions:

host_name This directive is used to specify the short name(s) of the host(s) that the service “runs” on or is associated
with. Multiple hosts should be separated by commas.

hostgroup_name This directive is used to specify the short name(s) of the hostgroup(s) that the service “runs” on
or is associated with. Multiple hostgroups should be separated by commas. The hostgroup_name may be used
instead of, or in addition to, the host_name directive.

This is possibleto define “complex” hostgroup expression with the following operators :

• & : it’s use to make an AND betweens groups

• : it’s use to make an OR betweens groups

• ! : it’s use to make a NOT of a group or expression

• , : it’s use to make a OR, like the | sign.

• (and) : they are use like in all math expressions.

For example the above definition is valid

hostgroup_name=(linux|windows)&!qualification,routers

This service wil be apply on hosts that are in the routers group or (in linux or windows and not in qualification
group).

service_description This directive is used to define the description of the service, which may contain spaces, dashes,
and colons (semicolons, apostrophes, and quotation marks should be avoided). No two services associated
with the same host can have the same description. Services are uniquely identified with their host_name and
service_description directives.

display_name This directive is used to define an alternate name that should be displayed in the web interface for this
service. If not specified, this defaults to the value you specify for the service_description directive.

The current CGIs do not use this option, although future versions of the web interface will.

servicegroups This directive is used to identify the short name(s) of the servicegroup(s) that the service belongs to.
Multiple servicegroups should be separated by commas. This directive may be used as an alternative to using
the members directive in servicegroup definitions.

254 Chapter 8. Config

Shinken Documentation, Release 2.4

is_volatile This directive is used to denote whether the service is “volatile”. Services are normally not volatile. More
information on volatile service and how they differ from normal services can be found here. Value: 0 = service
is not volatile, 1 = service is volatile.

check_command This directive is used to specify the short name of the command that Shinken will run in order
to check the status of the service. The maximum amount of time that the service check command can run is
controlled by the service_check_timeout option. There is also a command with the reserved name “bp_rule”. It
is defined internally and has a special meaning. Unlike other commands it mustn’t be registered in a command
definition. It’s purpose is not to execute a plugin but to represent a logical operation on the statuses of other
services. It is possible to define logical relationships with the following operators :

• & : it’s use to make an AND betweens statuses

• : it’s use to make an OR betweens statuses

• ! : it’s use to make a NOT of a status or expression

• , : it’s use to make a OR, like the | sign.

• (and) : they are used like in all math expressions

For example the following definition of a business process rule is valid

bp_rule!(websrv1,apache | websrv2,apache) & dbsrv1,oracle

If at least one of the apaches on servers websrv1 and websrv2 is OK and if the oracle database on dbsrv1 is OK
then the rule and thus the service is OK

initial_state By default Shinken will assume that all services are in OK states when in starts. You can override the
initial state for a service by using this directive. Valid options are:

• o = OK

• w = WARNING

• u = UNKNOWN

• c = CRITICAL.

max_check_attempts This directive is used to define the number of times that Shinken will retry the service check
command if it returns any state other than an OK state. Setting this value to 1 will cause Shinken to generate an
alert without retrying the service check again.

check_interval This directive is used to define the number of “time units” to wait before scheduling the next “regular”
check of the service. “Regular” checks are those that occur when the service is in an OK state or when the
service is in a non-OK state, but has already been rechecked max_check_attempts number of times. Unless
you’ve changed the interval_length directive from the default value of 60, this number will mean minutes. More
information on this value can be found in the check scheduling documentation.

retry_interval This directive is used to define the number of “time units” to wait before scheduling a re-check of the
service. Services are rescheduled at the retry interval when they have changed to a non-OK state. Once the ser-
vice has been retried max_check_attempts times without a change in its status, it will revert to being scheduled
at its “normal” rate as defined by the check_interval value. Unless you’ve changed the interval_length directive
from the default value of 60, this number will mean minutes. More information on this value can be found in
the check scheduling documentation.

active_checks_enabled * This directive is used to determine whether or not active checks of this service are enabled.
Values:

• 0 = disable active service checks

• 1 = enable active service checks.

8.3. Service Definition 255

Shinken Documentation, Release 2.4

passive_checks_enabled * This directive is used to determine whether or not passive checks of this service are en-
abled. Values:

• 0 = disable passive service checks

• 1 = enable passive service checks.

check_period This directive is used to specify the short name of the time period during which active checks of this
service can be made.

obsess_over_service * This directive determines whether or not checks for the service will be “obsessed” over using
the ocsp_command.

check_freshness * This directive is used to determine whether or not freshness checks are enabled for this service.
Values:

• 0 = disable freshness checks

• 1 = enable freshness checks

freshness_threshold This directive is used to specify the freshness threshold (in seconds) for this service. If you set
this directive to a value of 0, Shinken will determine a freshness threshold to use automatically.

event_handler This directive is used to specify the short name of the command that should be run whenever a change
in the state of the service is detected (i.e. whenever it goes down or recovers). Read the documentation on event
handlers for a more detailed explanation of how to write scripts for handling events. The maximum amount of
time that the event handler command can run is controlled by the event_handler_timeout option.

event_handler_enabled * This directive is used to determine whether or not the event handler for this service is
enabled. Values:

• 0 = disable service event handler

• 1 = enable service event handler.

low_flap_threshold This directive is used to specify the low state change threshold used in flap detection for this
service. More information on flap detection can be found here. If you set this directive to a value of 0, the
program-wide value specified by the low_service_flap_threshold directive will be used.

high_flap_threshold This directive is used to specify the high state change threshold used in flap detection for this
service. More information on flap detection can be found here. If you set this directive to a value of 0, the
program-wide value specified by the high_service_flap_threshold directive will be used.

flap_detection_enabled * This directive is used to determine whether or not flap detection is enabled for this service.
More information on flap detection can be found here. Values:

• 0 = disable service flap detection

• 1 = enable service flap detection.

flap_detection_options This directive is used to determine what service states the flap detection logic will use for
this service. Valid options are a combination of one or more of the following :

• o = OK states

• w = WARNING states

• c = CRITICAL states

• u = UNKNOWN states.

process_perf_data * This directive is used to determine whether or not the processing of performance data is enabled
for this service. Values:

• 0 = disable performance data processing

256 Chapter 8. Config

Shinken Documentation, Release 2.4

• 1 = enable performance data processing

retain_status_information This directive is used to determine whether or not status-related information about the
service is retained across program restarts. This is only useful if you have enabled state retention using the
retain_state_information directive. Value:

• 0 = disable status information retention

• 1 = enable status information retention.

retain_nonstatus_information This directive is used to determine whether or not non-status information about the
service is retained across program restarts. This is only useful if you have enabled state retention using the
retain_state_information directive. Value:

• 0 = disable non-status information retention

• 1 = enable non-status information retention

notification_interval This directive is used to define the number of “time units” to wait before re-notifying a contact
that this service is still in a non-OK state. Unless you’ve changed the interval_length directive from the default
value of 60, this number will mean minutes. If you set this value to 0, Shinken will not re-notify contacts about
problems for this service - only one problem notification will be sent out.

first_notification_delay This directive is used to define the number of “time units” to wait before sending out the
first problem notification when this service enters a non-OK state. Unless you’ve changed the interval_length
directive from the default value of 60, this number will mean minutes. If you set this value to 0, Shinken will
start sending out notifications immediately.

notification_period This directive is used to specify the short name of the time period during which notifications of
events for this service can be sent out to contacts. No service notifications will be sent out during times which
is not covered by the time period.

notification_options This directive is used to determine when notifications for the service should be sent out. Valid
options are a combination of one or more of the following:

• w = send notifications on a WARNING state

• u = send notifications on an UNKNOWN state

• c = send notifications on a CRITICAL state

• r = send notifications on recoveries (OK state)

• f = send notifications when the service starts and stops flapping

• s = send notifications when scheduled downtime starts and ends

• n (none) as an option, no service notifications will be sent out. If you do not specify any notification
options, Shinken will assume that you want notifications to be sent out for all possible states

If you specify w,r in this field, notifications will only be sent out when the service goes into a WARNING state
and when it recovers from a WARNING state.

notifications_enabled * This directive is used to determine whether or not notifications for this service are enabled.
Values:

• 0 = disable service notifications

• 1 = enable service notifications.

contacts This is a list of the short names of the contacts that should be notified whenever there are problems (or
recoveries) with this service. Multiple contacts should be separated by commas. Useful if you want notifications
to go to just a few people and don’t want to configure contact groups. You must specify at least one contact or
contact group in each service definition.

8.3. Service Definition 257

Shinken Documentation, Release 2.4

contact_groups This is a list of the short names of the contact groups that should be notified whenever there are
problems (or recoveries) with this service. Multiple contact groups should be separated by commas. You must
specify at least one contact or contact group in each service definition.

stalking_options This directive determines which service states “stalking” is enabled for. Valid options are a combi-
nation of one or more of the following :

• o = stalk on OK states

• w = stalk on WARNING states

• u = stalk on UNKNOWN states

• c = stalk on CRITICAL states

More information on state stalking can be found here.

notes This directive is used to define an optional string of notes pertaining to the service. If you specify a note here,
you will see the it in the extended information CGI (when you are viewing information about the specified
service).

notes_url This directive is used to define an optional URL that can be used to provide more information about the
service. If you specify an URL, you will see a red folder icon in the CGIs (when you are viewing service
information) that links to the URL you specify here. Any valid URL can be used. If you plan on using relative
paths, the base path will the the same as what is used to access the CGIs (i.e. ///cgi-bin/shinken///). This can be
very useful if you want to make detailed information on the service, emergency contact methods, etc. available
to other support staff.

action_url This directive is used to define an optional URL that can be used to provide more actions to be performed
on the service. If you specify an URL, you will see a red “splat” icon in the CGIs (when you are viewing service
information) that links to the URL you specify here. Any valid URL can be used. If you plan on using relative
paths, the base path will the the same as what is used to access the CGIs (i.e. ///cgi-bin/shinken///).

icon_image This variable is used to define the name of a GIF, PNG, or JPG image that should be associated with this
service. This image will be displayed in the status and extended information CGIs. The image will look best if it
is 40x40 pixels in size. Images for services are assumed to be in the logos/ subdirectory in your HTML images
directory.

icon_image_alt This variable is used to define an optional string that is used in the ALT tag of the image specified by
the <icon_image> argument. The ALT tag is used in the status, extended information and statusmap CGIs.

poller_tag This variable is used to define the poller_tag of checks from this service. All of theses checks will be taken
by pollers that have this value in their poller_tags parameter.

By default there is no poller_tag, so all untaggued pollers can take it.

reactionner_tag This variable is used to define the reactionner_tag of notifications_commands from this service. All
of theses notifications will be taken by reactionners that have this value in their reactionner_tags parameter.

By default there is no reactionner_tag, so all untaggued reactionners can take it.

duplicate_foreach This is used to generate serveral service with only one service declaration. Shinken understands
this statement as : “Create a service for earch key in the variable”. Usually, this statement come with a “KEY”
string in the service_description (to have a differente name) and in the check_command (you want also a dif-
ferent check) Moreover, one or several variables can be associated to each key. Then, values can be used in the
service definition with $VALUE$ or $VALUEn$ macros.

define host {
host_name linux-server
...
_partitions var $(/var)$, root $(/)$
_openvpns vpn1 $(tun1)$$(10.8.0.1)$, vpn2 $(tun2)$$(192.168.3.254)$
...

258 Chapter 8. Config

Shinken Documentation, Release 2.4

}

define service{
host_name linux-server
service_description disk-KEY
check_command check_disk!$VALUE$
...
duplicate_foreach _partitions

}

define service{
host_name linux-server
service_description openvpn-KEY-check-interface
check_command check_int!$VALUE1$
...
duplicate_foreach _openvpns

}

define service{
host_name linux-server
service_description openvpn-KEY-check-gateway
check_command check_ping!$VALUE2$
...
duplicate_foreach _openvpns

}

service_dependencies This variable is used to define services that this service is dependent of for notifications.
It’s a comma separated list of services: host,service_description,host,service_description. For each service a
service_dependency will be created with default values (notification_failure_criteria as ‘u,c,w’ and no depen-
dency_period). For more complex failure criteria or dpendency period you must create a service_dependency
object, as described in advanced dependency configuraton. The host can be omitted from the configuration,
which means that the service dependency is for the same host.

service_dependencies hostA,service_descriptionA,hostB,service_descriptionB
service_dependencies ,service_descriptionA,,service_descriptionB,hostC,service_descriptionC

By default this value is void so there is no linked dependencies. This is typically used to make a service
dependent on an agent software, like an NRPE check dependent on the availability of the NRPE agent.

business_impact This variable is used to set the importance we gave to this service from the less important (0 =
nearly nobody will see if it’s in error) to the maximum (5 = you lost your job if it fail). The default value is 2.

icon_set This variable is used to set the icon in the Shinken Webui. For now, values are only : database, disk,
network_service, server

maintenance_period Shinken-specific variable to specify a recurring downtime period. This works like a scheduled
downtime, so unlike a check_period with exclusions, checks will still be made (no “blackout” times). announce-
ment

host_dependency_enabled This variable may be used to remove the dependency between a service and its parent
host. Used for volatile services that need notification related to itself and not depend on the host notifications.

labels This variable may be used to place arbitrary labels (separated by comma character). Those labels may be used
in other configuration objects such as business rules to identify groups of services.

business_rule_output_template Classic service check output is managed by the underlying plugin (the check output
is the plugin stdout). For business rules, as there’s no real plugin behind, the output may be controlled by a
template string defined in business_rule_output_template directive.

8.3. Service Definition 259

http://www.mail-archive.com/shinken-devel@lists.sourceforge.net/msg00247.html
http://www.mail-archive.com/shinken-devel@lists.sourceforge.net/msg00247.html

Shinken Documentation, Release 2.4

business_rule_smart_notifications This variable may be used to activate smart notifications on business rules. This
allows to stop sending notification if all underlying problems have been acknowledged.

business_rule_smart_notifications By default, downtimes are not taken into account by business rules smart noti-
fications processing. This variable allows to extend smart notifications to underlying hosts or service checks
under downtime (they are treated as if they were acknowledged).

business_rule_host_notification_options This option allows to enforce business rules underlying hosts notification
options to easily compose a consolidated meta check. This is especially useful for business rules relying on
grouping expansion.

business_rule_service_notification_options This option allows to enforce business rules underlying services notifi-
cation options to easily compose a consolidated meta check. This is especially useful for business rules relying
on grouping expansion.

snapshot_enabled This option allows to enable snapshots snapshots on this element.

snapshot_command Command to launch when a snapshot launch occurs

snapshot_period Timeperiod when the snapshot call is allowed

snapshot_criteria List of states that enable the snapshot launch. Mainly bad states.

snapshot_interval Minimum interval between two launch of snapshots to not hammering the host, in interval_length
units (by default 60s) :)

trigger_name This options define the trigger that will be executed after a check result (passive or active). This file
trigger_name.trig has to exist in the trigger directory or sub-directories.

trigger_broker_raise_enabled This option define the behavior of the defined trigger (Default 0). If set to 1, this
means the trigger will modify the output / return code of the check. If 0, this means the code executed by the
trigger does nothing to the check (compute something elsewhere ?) Basically, if you use one of the predefined
function (trigger_functions.py) set it to 1

8.4 Service Group Definition

8.4.1 Description

A service group definition is used to group one or more services together for simplifying configuration with object
tricks or display purposes in the CGIs.

8.4.2 Definition Format

Bold directives are required, while the others are optional.

define servicegroup{
servicegroup_name *servicegroup_name*
alias *alias*
members services
servicegroup_members servicegroups
notes note_string
notes_url url
action_url url
}

260 Chapter 8. Config

Shinken Documentation, Release 2.4

8.4.3 Example Definition

define servicegroup{
servicegroup_name dbservices
alias Database Services
members ms1,SQL Server,ms1,SQL Serverc Agent,ms1,SQL DTC

}

8.4.4 Directive Descriptions:

servicegroup_name This directive is used to define a short name used to identify the service group.

alias This directive is used to define is a longer name or description used to identify the service group. It is provided
in order to allow you to more easily identify a particular service group.

members This is a list of the descriptions of services (and the names of their corresponding hosts) that should be
included in this group. Host and service names should be separated by commas. This directive may be used
as an alternative to the servicegroups directive in service definitions. The format of the member directive is as
follows (note that a host name must precede a service name/description):

members=<host1>,<service1>,<host2>,<service2>,...,<host*n*>,<service*n*>

servicegroup_members This optional directive can be used to include services from other “sub” service groups in
this service group. Specify a comma-delimited list of short names of other service groups whose members
should be included in this group.

notes This directive is used to define an optional string of notes pertaining to the service group. If you specify a note
here, you will see the it in the extended information CGI (when you are viewing information about the specified
service group).

notes_url This directive is used to define an optional URL that can be used to provide more information about the
service group. If you specify an URL, you will see a red folder icon in the CGIs (when you are viewing service
group information) that links to the URL you specify here. Any valid URL can be used. If you plan on using
relative paths, the base path will the the same as what is used to access the CGIs (i.e. ///cgi-bin/shinken///). This
can be very useful if you want to make detailed information on the service group, emergency contact methods,
etc. available to other support staff.

action_url This directive is used to define an optional URL that can be used to provide more actions to be performed
on the service group. If you specify an URL, you will see a red “splat” icon in the CGIs (when you are viewing
service group information) that links to the URL you specify here. Any valid URL can be used. If you plan on
using relative paths, the base path will the the same as what is used to access the CGIs (i.e. ///cgi-bin/shinken///).

8.5 Contact Definition

8.5.1 Description

A contact definition is used to identify someone who should be contacted in the event of a problem on your network.
The different arguments to a contact definition are described below.

8.5.2 Definition Format

Bold directives are required, while the others are optional.

8.5. Contact Definition 261

Shinken Documentation, Release 2.4

define contact{
contact_name *contact_name*
alias alias
contactgroups contactgroup_names
host_notifications_enabled [0/1]
service_notifications_enabled [0/1]
host_notification_period *timeperiod_name*
service_notification_period *timeperiod_name*
host_notification_options [d,u,r,f,s,n]
service_notification_options [w,u,c,r,f,s,n]
host_notification_commands *command_name*
service_notification_commands *command_name*
email email_address
pager pager_number or pager_email_gateway
address*x* additional_contact_address
can_submit_commands [0/1]
is_admin [0/1]
retain_status_information [0/1]
retain_nonstatus_information [0/1]
min_business_impact [0/1/2/3/4/5]
}

8.5.3 Example Definition

define contact{
contact_name jdoe
alias John Doe
host_notifications_enabled 1
service_notifications_enabled 1
service_notification_period 24x7
host_notification_period 24x7
service_notification_options w,u,c,r
host_notification_options d,u,r
service_notification_commands notify-service-by-email
host_notification_commands notify-host-by-email
email jdoe@localhost.localdomain
pager 555-5555@pagergateway.localhost.localdomain
address1 xxxxx.xyyy@icq.com
address2 555-555-5555
can_submit_commands 1

}

8.5.4 Directive Descriptions

contact_name This directive is used to define a short name used to identify the contact. It is referenced in contact
group definitions. Under the right circumstances, the $CONTACTNAME$ macro will contain this value.

alias This directive is used to define a longer name or description for the contact. Under the rights circumstances, the
$CONTACTALIAS$ macro will contain this value. If not specified, the contact_name will be used as the alias.

contactgroups This directive is used to identify the short name(s) of the contactgroup(s) that the contact belongs to.
Multiple contactgroups should be separated by commas. This directive may be used as an alternative to (or in
addition to) using the members directive in contactgroup definitions.

262 Chapter 8. Config

Shinken Documentation, Release 2.4

host_notifications_enabled This directive is used to determine whether or not the contact will receive notifications
about host problems and recoveries. Values :

• 0 = don’t send notifications

• 1 = send notifications

service_notifications_enabled This directive is used to determine whether or not the contact will receive notifications
about service problems and recoveries. Values:

• 0 = don’t send notifications

• 1 = send notifications

host_notification_period This directive is used to specify the short name of the time period during which the contact
can be notified about host problems or recoveries. You can think of this as an “on call” time for host notifications
for the contact. Read the documentation on time periods for more information on how this works and potential
problems that may result from improper use.

service_notification_period This directive is used to specify the short name of the time period during which the
contact can be notified about service problems or recoveries. You can think of this as an “on call” time for
service notifications for the contact. Read the documentation on time periods for more information on how this
works and potential problems that may result from improper use.

host_notification_commands This directive is used to define a list of the short names of the commands used to notify
the contact of a host problem or recovery. Multiple notification commands should be separated by commas. All
notification commands are executed when the contact needs to be notified. The maximum amount of time that a
notification command can run is controlled by the notification_timeout option.

host_notification_options This directive is used to define the host states for which notifications can be sent out to
this contact. Valid options are a combination of one or more of the following:

• d = notify on DOWN host states

• u = notify on UNREACHABLE host states

• r = notify on host recoveries (UP states)

• f = notify when the host starts and stops flapping,

• s = send notifications when host or service scheduled downtime starts and ends. If you specify n (none) as
an option, the contact will not receive any type of host notifications.

service_notification_options This directive is used to define the service states for which notifications can be sent out
to this contact. Valid options are a combination of one or more of the following:

• w = notify on WARNING service states

• u = notify on UNKNOWN service states

• c = notify on CRITICAL service states

• r = notify on service recoveries (OK states)

• f = notify when the service starts and stops flapping.

• n = (none) : the contact will not receive any type of service notifications.

service_notification_commands This directive is used to define a list of the short names of the commands used to
notify the contact of a service problem or recovery. Multiple notification commands should be separated by
commas. All notification commands are executed when the contact needs to be notified. The maximum amount
of time that a notification command can run is controlled by the notification_timeout option.

8.5. Contact Definition 263

Shinken Documentation, Release 2.4

email This directive is used to define an email address for the contact. Depending on how you configure your noti-
fication commands, it can be used to sendout an alert email to the contact. Under the right circumstances, the
$CONTACTEMAIL$ macro will contain this value.

pager This directive is used to define a pager number for the contact. It can also be an email address to a pager
gateway (i.e. pagejoe@pagenet.com). Depending on how you configure your notification commands, it can be
used to send out an alert page to the contact. Under the right circumstances, the $CONTACTPAGER$ macro
will contain this value.

address*x* Address directives are used to define additional “addresses” for the contact. These addresses can be any-
thing - cell phone numbers, instant messaging addresses, etc. Depending on how you configure your notification
commands, they can be used to send out an alert o the contact. Up to six addresses can be defined using these
directives (address1 through address6). The $CONTACTADDRESS*x*$ macro will contain this value.

can_submit_commands This directive is used to determine whether or not the contact can submit external commands
to Shinken from the CGIs. Values:

• 0 = don’t allow contact to submit commands

• 1 = allow contact to submit commands.

is_admin This directive is used to determine whether or not the contact can see all object in WebUI. Values:

• 0 = normal user, can see all objects he is in contact

• 1 = allow contact to see all objects

retain_status_information This directive is used to determine whether or not status-related information about the
contact is retained across program restarts. This is only useful if you have enabled state retention using the
retain_state_information directive. Value :

• 0 = disable status information retention

• 1 = enable status information retention.

retain_nonstatus_information This directive is used to determine whether or not non-status information about the
contact is retained across program restarts. This is only useful if you have enabled state retention using the
retain_state_information directive. Value :

• 0 = disable non-status information retention

• 1 = enable non-status information retention

min_business_impact This directive is use to define the minimum business criticity level of a service/host the contact
will be notified. Please see root_problems_and_impacts for more details.

• 0 = less important

• 1 = more important than 0

• 2 = more important than 1

• 3 = more important than 2

• 4 = more important than 3

• 5 = most important

264 Chapter 8. Config

Shinken Documentation, Release 2.4

8.6 Contact Group Definition

8.6.1 Description

A contact group definition is used to group one or more contacts together for the purpose of sending out alert/recovery
notifications.

8.6.2 Definition Format:

Bold directives are required, while the others are optional.

define contactgroup{
contactgroup_name contactgroup_name
alias alias
members contacts
contactgroup_members contactgroups
}

8.6.3 Example Definition:

define contactgroup{
contactgroup_name novell-admins
alias Novell Administrators
members jdoe,rtobert,tzach

}

8.6.4 Directive Descriptions:

contactgroup_name This directive is a short name used to identify the contact group.

alias This directive is used to define a longer name or description used to identify the contact group.

members This directive is used to define a list of the short names of contacts that should be included in this group.
Multiple contact names should be separated by commas. This directive may be used as an alternative to (or in
addition to) using the contactgroups directive in contact definitions.

contactgroup_members This optional directive can be used to include contacts from other “sub” contact groups in
this contact group. Specify a comma-delimited list of short names of other contact groups whose members
should be included in this group.

8.7 Time Period Definition

8.7.1 Description

A time period is a list of times during various days that are considered to be “valid” times for notifications and service
checks. It consists of time ranges for each day of the week that “rotate” once the week has come to an end. Different
types of exceptions to the normal weekly time are supported, including: specific weekdays, days of generic months,
days of specific months, and calendar dates.

8.6. Contact Group Definition 265

Shinken Documentation, Release 2.4

8.7.2 Definition Format

Bold directives are required, while the others are optional.

define timeperiod{
timeperiod_name *timeperiod_name*
alias *alias*
[weekday] timeranges
[exception] timeranges
exclude [timeperiod1,timeperiod2,...,timeperiodn]
}

8.7.3 Example Definitions

define timeperiod{
timeperiod_name nonworkhours
alias Non-Work Hours
sunday 00:00-24:00 ; Every Sunday of every week
monday 00:00-09:00,17:00-24:00 ; Every Monday of every week
tuesday 00:00-09:00,17:00-24:00 ; Every Tuesday of every week
wednesday 00:00-09:00,17:00-24:00 ; Every Wednesday of every week
thursday 00:00-09:00,17:00-24:00 ; Every Thursday of every week
friday 00:00-09:00,17:00-24:00 ; Every Friday of every week
saturday 00:00-24:00 ; Every Saturday of every week

}

define timeperiod{
timeperiod_name misc-single-days
alias Misc Single Days
1999-01-28 00:00-24:00 ; January 28th, 1999
monday 3 00:00-24:00 ; 3rd Monday of every month
day 2 00:00-24:00 ; 2nd day of every month
february 10 00:00-24:00 ; February 10th of every year
february -1 00:00-24:00 ; Last day in February of every year
friday -2 00:00-24:00 ; 2nd to last Friday of every month
thursday -1 november 00:00-24:00 ; Last Thursday in November of every year

}

define timeperiod{
timeperiod_name misc-date-ranges
alias Misc Date Ranges
2007-01-01 - 2008-02-01 00:00-24:00 ; January 1st, 2007 to February 1st, 2008
monday 3 - thursday 4 00:00-24:00 ; 3rd Monday to 4th Thursday of every month
day 1 - 15 00:00-24:00 ; 1st to 15th day of every month
day 20 - -1 00:00-24:00 ; 20th to the last day of every month
july 10 - 15 00:00-24:00 ; July 10th to July 15th of every year
april 10 - may 15 00:00-24:00 ; April 10th to May 15th of every year
tuesday 1 april - friday 2 may 00:00-24:00 ; 1st Tuesday in April to 2nd Friday in May of every year

}

define timeperiod{
timeperiod_name misc-skip-ranges
alias Misc Skip Ranges
2007-01-01 - 2008-02-01 / 3 00:00-24:00 ; Every 3 days from January 1st, 2007 to February 1st, 2008
2008-04-01 / 7 00:00-24:00 ; Every 7 days from April 1st, 2008 (continuing forever)
monday 3 - thursday 4 / 2 00:00-24:00 ; Every other day from 3rd Monday to 4th Thursday of every month

266 Chapter 8. Config

Shinken Documentation, Release 2.4

day 1 - 15 / 5 00:00-24:00 ; Every 5 days from the 1st to the 15th day of every month
july 10 - 15 / 2 00:00-24:00 ; Every other day from July 10th to July 15th of every year
tuesday 1 april - friday 2 may / 6 00:00-24:00 ; Every 6 days from the 1st Tuesday in April to the 2nd Friday in May of every year

}

8.7.4 Directive Descriptions

timeperiod_name This directives is the short name used to identify the time period.

alias This directive is a longer name or description used to identify the time period.

[weekday] The weekday directives (“sunday” through “saturday”)are comma-delimited lists of time ranges that are
“valid” times for a particular day of the week. Notice that there are seven different days for which you can
define time ranges (Sunday through Saturday). Each time range is in the form of HH:MM-HH:MM, where
hours are Specified on a 24 hour clock. For example, 00:15-24:00 means 12:15am in the morning for this day
until 12:00am midnight (a 23 hour, 45 minute total time range). If you wish to exclude an entire day from the
timeperiod, simply do not include it in the timeperiod definition.

The daterange format are multiples :

• Calendar Daterange : look like a standard date, so like 2005-04-04 - 2008-09-19.

• Month Week Day: Then there are the month week day daterange same than before, but without the year
and with day names That give something like : tuesday 2 january - thursday 4 august / 5

• Now Month Date Daterange: It looks like : february 1 - march 15 / 3

• Now Month Day Daterange. It looks like day 13 - 14

• Now Standard Daterange: Ok this time it’s quite easy: monday

[exception] You can specify several different types of exceptions to the standard rotating weekday schedule. Excep-
tions can take a number of different forms including single days of a specific or generic month, single weekdays
in a month, or single calendar dates. You can also specify a range of days/dates and even specify skip intervals
to obtain functionality described by “every 3 days between these dates”. Rather than list all the possible formats
for exception strings, I’ll let you look at the example timeperiod definitions above to see what’s possible. :-)
Weekdays and different types of exceptions all have different levels of precedence, so its important to understand
how they can affect each other. More information on this can be found in the documentation on timeperiods.

exclude This directive is used to specify the short names of other timeperiod definitions whose time ranges should be
excluded from this timeperiod. Multiple timeperiod names should be separated with a comma.

Note: The day skip functionality is not managed from now, so it’s like all is / 1

8.8 Command Definition

8.8.1 Description

A command definition is just that. It defines a command. Commands that can be defined include service checks,
service notifications, service event handlers, host checks, host notifications, and host event handlers. Command def-
initions can contain macros, but you must make sure that you include only those macros that are “valid” for the
circumstances when the command will be used. More information on what macros are available and when they are
“valid” can be found here. The different arguments to a command definition are outlined below.

Tip: If, you need to have the ‘$’ character in one of your command (and not referring to a macro), please put “$$”

8.8. Command Definition 267

Shinken Documentation, Release 2.4

instead. Shinken will replace it well

8.8.2 Definition Format

Bold directives are required, while the others are optional.

define command{
command_name *command_name*
command_line *command_line*
poller_tag poller_tag
}

8.8.3 Example Definition

define command{
command_name check_pop
command_line /var/lib/shinken/libexec/check_pop -H $HOSTADDRESS$

}

8.8.4 Directive Descriptions

command_name This directive is the short name used to identify the command. It is referenced in contact, host, and
service definitions (in notification, check, and event handler directives), among other places.

command_line This directive is used to define what is actually executed by Shinken when the command is used for
service or host checks, notifications, or event handlers. Before the command line is executed, all valid macros
are replaced with their respective values. See the documentation on macros for determining when you can use
different macros. Note that the command line is not surrounded in quotes. Also, if you want to pass a dollar
sign ($) on the command line, you have to escape it with another dollar sign.

You may not include a semicolon (;) in the command_line directive, because everything after it will be ignored
as a config file comment. You can work around this limitation by setting one of the $USERn$ macros in your
resource file to a semicolon and then referencing the appropriate $USER$ macro in the command_line directive
in place of the semicolon.

If you want to pass arguments to commands during runtime, you can use $ARGn$ macros in the command_line
directive of the command definition and then separate individual arguments from the command name (and
from each other) using bang (!) characters in the object definition directive (host check command, service
event handler command, etc.) that references the command. More information on how arguments in command
definitions are processed during runtime can be found in the documentation on macros.

poller_tag This directive is used to define the poller_tag of this command. If the host/service that call this command
do not override it with their own poller_tag, it will make this command if used in a check only taken by polelrs
that also have this value in their poller_tags parameter.

By default there is no poller_tag, so all untagged pollers can take it.

268 Chapter 8. Config

Shinken Documentation, Release 2.4

8.9 Service Dependency Definition

8.9.1 Description

Service dependencies are an advanced feature of Shinken that allow you to suppress notifications and active checks of
services based on the status of one or more other services. Service dependencies are optional and are mainly targeted
at advanced users who have complicated monitoring setups. More information on how service dependencies work
(read this!) can be found here.

8.9.2 Definition Format

Bold directives are required, while the others are optional. However, you must supply at least one type of criteria for
the definition to be of much use.

define servicedependency{
dependent_host_name *host_name*
dependent_hostgroup_name hostgroup_name
dependent_service_description *service_description*
host_name *host_name*
hostgroup_name hostgroup_name
service_description *service_description*
inherits_parent [0/1]
execution_failure_criteria [o,w,u,c,p,n]
notification_failure_criteria [o,w,u,c,p,n]
dependency_period timeperiod_name
}

8.9.3 Example Definition

define servicedependency{
host_name WWW1
service_description Apache Web Server
dependent_host_name WWW1
dependent_service_description Main Web Site
execution_failure_criteria n
notification_failure_criteria w,u,c

}

8.9.4 Directive Descriptions

dependent_host_name This directive is used to identify the short name(s) of the host(s) that the dependent service
“runs” on or is associated with. Multiple hosts should be separated by commas. Leaving this directive blank can
be used to create “same host” dependencies.

dependent_hostgroup This directive is used to specify the short name(s) of the hostgroup(s) that the dependent
service “runs” on or is associated with. Multiple hostgroups should be separated by commas. The “depen-
dent_hostgroup” may be used instead of, or in addition to, the “dependent_host” directive.

dependent_service_description This directive is used to identify the description of the dependent service.

host_name This directive is used to identify the short name(s) of the host(s) that the service that is being depended
upon (also referred to as the master service) “runs” on or is associated with. Multiple hosts should be separated
by commas.

8.9. Service Dependency Definition 269

Shinken Documentation, Release 2.4

hostgroup_name This directive is used to identify the short name(s) of the hostgroup(s) that the service that is
being depended upon (also referred to as the master service) “runs” on or is associated with. Multiple host-
groups should be separated by commas. The “hostgroup_name” may be used instead of, or in addition to, the
“host_name” directive.

service_description This directive is used to identify the description of the service that is being depended upon (also
referred to as the master service).

inherits_parent This directive indicates whether or not the dependency inherits dependencies of the service that is
being depended upon (also referred to as the master service). In other words, if the master service is dependent
upon other services and any one of those dependencies fail, this dependency will also fail.

execution_failure_criteria This directive is used to specify the criteria that determine when the dependent service
should not be actively checked. If the master service is in one of the failure states we specify, the dependent
service will not be actively checked. Valid options are a combination of one or more of the following (multiple
options are separated with commas):

• o = fail on an OK state

• w = fail on a WARNING state

• u = fail on an UNKNOWN state

• c = fail on a CRITICAL state

• p = fail on a pending state (e.g. the service has not yet been checked).

• n (none) : the execution dependency will never fail and checks of the dependent service will always be
actively checked (if other conditions allow for it to be).

If you specify o,c,u in this field, the dependent service will not be actively checked if the master service is in
either an OK, a CRITICAL, or an UNKNOWN state.

notification_failure_criteria This directive is used to define the criteria that determine when notifications for the
dependent service should not be sent out. If the master service is in one of the failure states we specify, notifi-
cations for the dependent service will not be sent to contacts. Valid options are a combination of one or more of
the following:

• o = fail on an OK state

• w = fail on a WARNING state

• u = fail on an UNKNOWN state

• c = fail on a CRITICAL state

• p = fail on a pending state (e.g. the service has not yet been checked).

• n = (none) : the notification dependency will never fail and notifications for the dependent service will
always be sent out.

If you specify w in this field, the notifications for the dependent service will not be sent out if the master service
is in a WARNING state.

dependency_period This directive is used to specify the short name of the time period during which this dependency
is valid. If this directive is not specified, the dependency is considered to be valid during all times.

270 Chapter 8. Config

Shinken Documentation, Release 2.4

8.10 Service Escalation Definition

8.10.1 Description

Service escalations are completely optional and are used to escalate notifications for a particular service. More infor-
mation on how notification escalations work can be found here.

8.10.2 Definition Format

Bold directives are required, while the others are optional.

define serviceescalation{
host_name *host_name*
hostgroup_name hostgroup_name
service_description *service_description*
contacts *contacts*
contact_groups *contactgroup_name*
first_notification #
last_notification #
first_notification_time #
last_notification_time #
notification_interval #
escalation_period timeperiod_name
escalation_options [w,u,c,r]
}

8.10.3 Example Definition

Here for an scalation that will escalade to “themanagers” after one hour problem and ends at 2 hours.

define serviceescalation{
host_name nt-3
service_description Processor Load
first_notification_time 60
last_notification_time 120
notification_interval 30
contact_groups themanagers

}

8.10.4 Directive Descriptions

host_name This directive is used to identify the short name(s) of the host(s) that the service escalation should apply
to or is associated with.

hostgroup_name This directive is used to specify the short name(s) of the hostgroup(s) that the service escala-
tion should apply to or is associated with. Multiple hostgroups should be separated by commas. The “host-
group_name” may be used instead of, or in addition to, the “host_name” directive.

service_description This directive is used to identify the description of the service the escalation should apply to.

first_notification This directive is a number that identifies the first notification for which this escalation is effective.
For instance, if you set this value to 3, this escalation will only be used if the service is in a non-OK state long
enough for a third notification to go out.

8.10. Service Escalation Definition 271

Shinken Documentation, Release 2.4

last_notification This directive is a number that identifies the last notification for which this escalation is effective.
For instance, if you set this value to 5, this escalation will not be used if more than five notifications are sent out
for the service. Setting this value to 0 means to keep using this escalation entry forever (no matter how many
notifications go out).

first_notification_time This directive is the number of “time intervals” (60 seconds by default) until that makes the
first notification for which this escalation is effective. For instance, if you set this value to 60, this escalation
will only be used if the service is in a non-OK state long enough for 60 minutes notification to go out.

last_notification_time This directive is a number of “time intervals” (60 seconds by default) until that makes the last
notification for which this escalation is effective. For instance, if you set this value to 120, this escalation will
not be used if more than two hours after then notifications are sent out for the service. Setting this value to 0
means to keep using this escalation entry forever (no matter how many notifications go out).

contacts This is a list of the short names of the contacts that should be notified whenever there are problems (or
recoveries) with this service. Multiple contacts should be separated by commas. Useful if you want notifications
to go to just a few people and don’t want to configure contact groups. You must specify at least one contact or
contact group in each service escalation definition.

contact_groups This directive is used to identify the short name of the contact group that should be notified when
the service notification is escalated. Multiple contact groups should be separated by commas. You must specify
at least one contact or contact group in each service escalation definition.

notification_interval This directive is used to determine the interval at which notifications should be made while this
escalation is valid. If you specify a value of 0 for the interval, Shinken will send the first notification when
this escalation definition is valid, but will then prevent any more problem notifications from being sent out for
the host. Notifications are sent out again until the host recovers. This is useful if you want to stop having
notifications sent out after a certain amount of time.

If multiple escalation entries for a host overlap for one or more notification ranges, the smallest notification
interval from all escalation entries is used.

escalation_period This directive is used to specify the short name of the time period during which this escalation is
valid. If this directive is not specified, the escalation is considered to be valid during all times.

escalation_options This directive is used to define the criteria that determine when this service escalation is used.
The escalation is used only if the service is in one of the states specified in this directive. If this directive is not
specified in a service escalation, the escalation is considered to be valid during all service states. Valid options
are a combination of one or more of the following:

• r = escalate on an OK (recovery) state

• w = escalate on a WARNING state

• u = escalate on an UNKNOWN state

• c = escalate on a CRITICAL state

If you specify w in this field, the escalation will only be used if the service is in a WARNING state.

Note: You can define generic escalation with the statement “define escalation” instead of serviceescalation. There
are less required parameter (as there is not type) but you still have to defined them to make it work

272 Chapter 8. Config

Shinken Documentation, Release 2.4

8.11 Host Dependency Definition

8.11.1 Description

Host dependencies are an advanced feature of Shinken that allow you to suppress notifications for hosts based on the
status of one or more other hosts. Host dependencies are optional and are mainly targeted at advanced users who have
complicated monitoring setups. More information on how host dependencies work (read this!) can be found here.

8.11.2 Definition Format

Bold directives are required, while the others are optional.

define hostdependency{
dependent_host_name *host_name*
dependent_hostgroup_name hostgroup_name
host_name *host_name*
hostgroup_name hostgroup_name
inherits_parent [0/1]
execution_failure_criteria [o,d,u,p,n]
notification_failure_criteria [o,d,u,p,n]
dependency_period timeperiod_name
}

8.11.3 Example Definition

define hostdependency{
host_name WWW1
dependent_host_name DBASE1
notification_failure_criteria d,u

}

8.11.4 Directive Descriptions

dependent_host_name This directive is used to identify the short name(s) of the dependent host(s). Multiple hosts
should be separated by commas.

dependent_hostgroup_name This directive is used to identify the short name(s) of the dependent hostgroup(s).
Multiple hostgroups should be separated by commas. The dependent_hostgroup_name may be used instead of,
or in addition to, the dependent_host_name directive.

host_name This directive is used to identify the short name(s) of the host(s) that is being depended upon (also referred
to as the master host). Multiple hosts should be separated by commas.

hostgroup_name This directive is used to identify the short name(s) of the hostgroup(s) that is being depended upon
(also referred to as the master host). Multiple hostgroups should be separated by commas. The hostgroup_name
may be used instead of, or in addition to, the host_name directive.

inherits_parent This directive indicates whether or not the dependency inherits dependencies of the host that is being
depended upon (also referred to as the master host). In other words, if the master host is dependent upon other
hosts and any one of those dependencies fail, this dependency will also fail.

execution_failure_criteria This directive is used to specify the criteria that determine when the dependent host
should not be actively checked. If the master host is in one of the failure states we specify, the dependent

8.11. Host Dependency Definition 273

Shinken Documentation, Release 2.4

host will not be actively checked. Valid options are a combination of one or more of the following (multiple
options are separated with commas):

• o = fail on an UP state

• d = fail on a DOWN state

• u = fail on an UNREACHABLE state

• p = fail on a pending state (e.g. the host has not yet been checked)

• n (none) : the execution dependency will never fail and the dependent host will always be actively checked
(if other conditions allow for it to be).

If you specify u,d in this field, the dependent host will not be actively checked if the master host is in either an
UNREACHABLE or DOWN state.

notification_failure_criteria This directive is used to define the criteria that determine when notifications for the
dependent host should not be sent out. If the master host is in one of the failure states we specify, notifications
for the dependent host will not be sent to contacts. Valid options are a combination of one or more of the
following:

• o = fail on an UP state

• d = fail on a DOWN state

• u = fail on an UNREACHABLE state

• p = fail on a pending state (e.g. the host has not yet been checked)

• n = (none) : the notification dependency will never fail and notifications for the dependent host will always
be sent out.

If you specify d in this field, the notifications for the dependent host will not be sent out if the master host is in
a DOWN state.

dependency_period This directive is used to specify the short name of the time period during which this dependency
is valid. If this directive is not specified, the dependency is considered to be valid during all times.

8.12 Host Escalation Definition

8.12.1 Description

Host escalations are completely optional and are used to escalate notifications for a particular host. More information
on how notification escalations work can be found here.

8.12.2 Definition Format

Bold directives are required, while the others are optional.

274 Chapter 8. Config

Shinken Documentation, Release 2.4

define hostescalation{
host_name *host_name*
hostgroup_name hostgroup_name
contacts *contacts*
contact_groups *contactgroup_name*
first_notification #
last_notification #
first_notification_time #
last_notification_time #
notification_interval #
escalation_period timeperiod_name
escalation_options [d,u,r]
}

8.12.3 Example Definition

Escalate to all-router-admins after one hour of problem, and stop at 2 hours.

define hostescalation{
host_name router-34
first_notification_time 60
last_notification_time 120
notification_interval 60
contact_groups all-router-admins

}

8.12.4 Directive Descriptions

host_name This directive is used to identify the short name of the host that the escalation should apply to.

hostgroup_name This directive is used to identify the short name(s) of the hostgroup(s) that the escalation should
apply to. Multiple hostgroups should be separated by commas. If this is used, the escalation will apply to all
hosts that are members of the specified hostgroup(s).

first_notification This directive is a number that identifies the first notification for which this escalation is effective.
For instance, if you set this value to 3, this escalation will only be used if the host is down or unreachable long
enough for a third notification to go out.

last_notification This directive is a number that identifies the last notification for which this escalation is effective.
For instance, if you set this value to 5, this escalation will not be used if more than five notifications are sent
out for the host. Setting this value to 0 means to keep using this escalation entry forever (no matter how many
notifications go out).

first_notification_time This directive is the number of “time intervals” (60 seconds by default) until that makes the
first notification for which this escalation is effective. For instance, if you set this value to 60, this escalation
will only be used if the host is in a non-OK state long enough for 60 minutes notification to go out.

last_notification_time This directive is a number of “time intervals” (60 seconds by default) until that makes the last
notification for which this escalation is effective. For instance, if you set this value to 120, this escalation will
not be used if more than two hours after then notifications are sent out for the service. Setting this value to 0
means to keep using this host entry forever (no matter how many notifications go out).

contacts This is a list of the short names of the contacts that should be notified whenever there are problems (or
recoveries) with this host. Multiple contacts should be separated by commas. Useful if you want notifications
to go to just a few people and don’t want to configure contact groups. You must specify at least one contact or
contact group in each host escalation definition.

8.12. Host Escalation Definition 275

Shinken Documentation, Release 2.4

contact_groups This directive is used to identify the short name of the contact group that should be notified when
the host notification is escalated. Multiple contact groups should be separated by commas. You must specify at
least one contact or contact group in each host escalation definition.

notification_interval This directive is used to determine the interval at which notifications should be made while this
escalation is valid. If you specify a value of 0 for the interval, Shinken will send the first notification when
this escalation definition is valid, but will then prevent any more problem notifications from being sent out for
the host. Notifications are sent out again until the host recovers. This is useful if you want to stop having
notifications sent out after a certain amount of time.

If multiple escalation entries for a host overlap for one or more notification ranges, the smallest notification
interval from all escalation entries is used.

escalation_period This directive is used to specify the short name of the time period during which this escalation is
valid. If this directive is not specified, the escalation is considered to be valid during all times.

escalation_options This directive is used to define the criteria that determine when this host escalation is used. The
escalation is used only if the host is in one of the states specified in this directive. If this directive is not specified
in a host escalation, the escalation is considered to be valid during all host states. Valid options are a combination
of one or more of the following :

• r = escalate on an UP (recovery) state

• d = escalate on a DOWN state

• u = escalate on an UNREACHABLE state

If you specify d in this field, the escalation will only be used if the host is in a DOWN state.

Note: You can define generic escalation with the statement “define escalation” instead of hostescalation. There are
less required parameter (as there is not type) but you still have to defined them to make it work

8.13 Extended Host Information Definition

8.13.1 Description

Extended host information entries are basically used to make the output from the status, statusmap, statuswrl, and
extinfo CGIs look pretty. They have no effect on monitoring and are completely optional.

Note: Tip: As of Nagios 3.x, all directives contained in extended host information definitions are also available in host
definitions. Thus, you can choose to define the directives below in your host definitions if it makes your configuration
simpler. Separate extended host information definitions will continue to be supported for backward compatibility.

8.13.2 Definition Format

Bold directives are required, while the others are optional.

276 Chapter 8. Config

Shinken Documentation, Release 2.4

define hostextinfo{
host_name *host_name*
notes notes
notes_url notes_url
action_url action_url
icon_image image_file
icon_image_alt alt_string
vrml_image image_file
statusmap_image image_file
2d_coords x_coord,y_coord
3d_coords x_coord,y_coord,z_coord
}

8.13.3 Example Definition

define hostextinfo{
host_name netware1
notes This is the primary Netware file server
notes_url http://webserver.localhost.localdomain/hostinfo.pl?host=netware1
icon_image novell40.png
icon_image_alt IntranetWare 4.11
vrml_image novell40.png
statusmap_image novell40.gd2
2d_coords 100,250
3d_coords 100.0,50.0,75.0

}

8.13.4 Directive Descriptions

host_name This variable is used to identify the short name of the host which the data is associated with.

notes This directive is used to define an optional string of notes pertaining to the host. If you specify a note here, you
will see the it in the extended information CGI (when you are viewing information about the specified host).

notes_url This variable is used to define an optional URL that can be used to provide more information about the
host. If you specify an URL, you will see a link that says “Extra Host Notes” in the extended information CGI
(when you are viewing information about the specified host). Any valid URL can be used. If you plan on using
relative paths, the base path will the the same as what is used to access the CGIs (i.e. /cgi-bin/nagios/). This can
be very useful if you want to make detailed information on the host, emergency contact methods, etc. available
to other support staff.

action_url This directive is used to define an optional URL that can be used to provide more actions to be performed
on the host. If you specify an URL, you will see a link that says “Extra Host Actions” in the extended information
CGI (when you are viewing information about the specified host). Any valid URL can be used. If you plan on
using relative paths, the base path will the the same as what is used to access the CGIs (i.e. /cgi-bin/nagios/).

icon_image This variable is used to define the name of a GIF, PNG, or JPG image that should be associated with this
host. This image will be displayed in the status and extended information CGIs. The image will look best if it
is 40x40 pixels in size. Images for hosts are assumed to be in the logos/ subdirectory in your HTML images
directory (i.e. /usr/local/nagios/share/images/logos).

icon_image_alt This variable is used to define an optional string that is used in the ALT tag of the image specified by
the <icon_image> argument. The ALT tag is used in the status, extended information and statusmap CGIs.

8.13. Extended Host Information Definition 277

Shinken Documentation, Release 2.4

vrml_image This variable is used to define the name of a GIF, PNG, or JPG image that should be associated with this
host. This image will be used as the texture map for the specified host in the statuswrl CGI. Unlike the image
you use for the <icon_image> variable, this one should probably not have any transparency. If it does, the host
object will look a bit weird. Images for hosts are assumed to be in the logos/ subdirectory in your HTML images
directory (i.e. /usr/local/nagios/share/images/logos).

statusmap_image This variable is used to define the name of an image that should be associated with this host in
the statusmap CGI. You can specify a JPEG, PNG, and GIF image if you want, although I would strongly
suggest using a GD2 format image, as other image formats will result in a lot of wasted CPU time when the
statusmap image is generated. GD2 images can be created from PNG images by using the pngtogd2 util-
ity supplied with Thomas Boutell’s gd library. The GD2 images should be created in uncompressed format
in order to minimize CPU load when the statusmap CGI is generating the network map image. The image
will look best if it is 40x40 pixels in size. You can leave these option blank if you are not using the sta-
tusmap CGI. Images for hosts are assumed to be in the logos/ subdirectory in your HTML images directory (i.e.
/usr/local/nagios/share/images/logos).

2d_coords This variable is used to define coordinates to use when drawing the host in the statusmap CGI. Coordinates
should be given in positive integers, as they correspond to physical pixels in the generated image. The origin
for drawing (0,0) is in the upper left hand corner of the image and extends in the positive x direction (to the
right) along the top of the image and in the positive y direction (down) along the left hand side of the image.
For reference, the size of the icons drawn is usually about 40x40 pixels (text takes a little extra space). The
coordinates you specify here are for the upper left hand corner of the host icon that is drawn. Note: Don’t worry
about what the maximum x and y coordinates that you can use are. The CGI will automatically calculate the
maximum dimensions of the image it creates based on the largest x and y coordinates you specify.

3d_coords This variable is used to define coordinates to use when drawing the host in the statuswrl CGI. Coordinates
can be positive or negative real numbers. The origin for drawing is (0.0,0.0,0.0). For reference, the size of the
host cubes drawn is 0.5 units on each side (text takes a little more space). The coordinates you specify here are
used as the center of the host cube.

8.14 Extended Service Information Definition

8.14.1 Description

Extended service information entries are basically used to make the output from the status and extinfo CGIs look
pretty. They have no effect on monitoring and are completely optional.

Note: Tip: As of Nagios 3.x, all directives contained in extended service information definitions are also available
in service definitions. Thus, you can choose to define the directives below in your service definitions if it makes your
configuration simpler. Separate extended service information definitions will continue to be supported for backward
compatibility.

8.14.2 Definition Format

Bold directives are required, while the others are optional.

278 Chapter 8. Config

Shinken Documentation, Release 2.4

define serviceextinfo{
host_name *host_name*
service_description *service_description*
notes notes
notes_url notes_url
action_url action_url
icon_image image_file
icon_image_alt alt_string
}

8.14.3 Example Definition

define serviceextinfo{
host_name linux2
service_description Log Anomalies
notes Security-related log anomalies on secondary Linux server
notes_url http://webserver.localhost.localdomain/serviceinfo.pl?host=linux2&service=Log+Anomalies
icon_image security.png
icon_image_alt Security-Related Alerts

}

8.14.4 Directive Descriptions

host_name This directive is used to identify the short name of the host that the service is associated with.

service_description This directive is description of the service which the data is associated with.

notes This directive is used to define an optional string of notes pertaining to the service. If you specify a note here,
you will see the it in the extended information CGI (when you are viewing information about the specified
service).

notes_url This directive is used to define an optional URL that can be used to provide more information about the
service. If you specify an URL, you will see a link that says “Extra Service Notes” in the extended information
CGI (when you are viewing information about the specified service). Any valid URL can be used. If you plan
on using relative paths, the base path will the the same as what is used to access the CGIs (i.e. /cgi-bin/nagios/).
This can be very useful if you want to make detailed information on the service, emergency contact methods,
etc. available to other support staff.

action_url This directive is used to define an optional URL that can be used to provide more actions to be performed
on the service. If you specify an URL, you will see a link that says “Extra Service Actions” in the extended
information CGI (when you are viewing information about the specified service). Any valid URL can be used.
If you plan on using relative paths, the base path will the the same as what is used to access the CGIs (i.e.
/cgi-bin/nagios/).

icon_image This variable is used to define the name of a GIF, PNG, or JPG image that should be associated with this
host. This image will be displayed in the status and extended information CGIs. The image will look best if it
is 40x40 pixels in size. Images for hosts are assumed to be in the logos/ subdirectory in your HTML images
directory (i.e. /usr/local/nagios/share/images/logos).

icon_image_alt This variable is used to define an optional string that is used in the ALT tag of the image specified by
the <icon_image> argument. The ALT tag is used in the status, extended information and statusmap CGIs.

8.14. Extended Service Information Definition 279

Shinken Documentation, Release 2.4

8.15 Notification Way Definition

8.15.1 Description

A notificationway definition is used to define the way a contact is notified.

8.15.2 Definition Format

Bold directives are required, while the others are optional.

define notificationway{
notificationway_name *notificationway_name*
host_notification_period *timeperiod_name*
service_notification_period *timeperiod_name*
host_notification_options [d,u,r,f,s,n]
service_notification_options [w,u,c,r,f,s,n]
host_notification_commands *command_name*
service_notification_commands *command_name*
min_business_impact [0/1/2/3/4/5]
}

8.15.3 Example Definition

Email the whole 24x7 is okay
define notificationway{

notificationway_name email_in_day
service_notification_period 24x7
host_notification_period 24x7
service_notification_options w,u,c,r,f
host_notification_options d,u,r,f,s
service_notification_commands notify-service
host_notification_commands notify-host

}

8.15.4 Directive Descriptions

notificationway_name This directive define the name of the notification witch be specified further in a contact defi-
nition

host_notification_period This directive is used to specify the short name of the time period during which the contact
can be notified about host problems or recoveries. You can think of this as an “on call” time for host notifications
for the contact. Read the documentation on time periods for more information on how this works and potential
problems that may result from improper use.

service_notification_period This directive is used to specify the short name of the time period during which the
contact can be notified about service problems or recoveries. You can think of this as an “on call” time for
service notifications for the contact. Read the documentation on time periods for more information on how this
works and potential problems that may result from improper use.

host_notification_commands This directive is used to define a list of the short names of the commands used to notify
the contact of a host problem or recovery. Multiple notification commands should be separated by commas. All
notification commands are executed when the contact needs to be notified. The maximum amount of time that a
notification command can run is controlled by the notification_timeout option.

280 Chapter 8. Config

Shinken Documentation, Release 2.4

service_notification_commands This directive is used to define a list of the short names of the commands used to
notify the contact of a service problem or recovery. Multiple notification commands should be separated by
commas. All notification commands are executed when the contact needs to be notified. The maximum amount
of time that a notification command can run is controlled by the notification_timeout option.

host_notification_options This directive is used to define the host states for which notifications can be sent out to
this contact. Valid options are a combination of one or more of the following:

• d = notify on DOWN host states

• u = notify on UNREACHABLE host states

• r = notify on host recoveries (UP states)

• f = notify when the host starts and stops flapping,

• s = send notifications when host or service scheduled downtime starts and ends. If you specify n (none) as
an option, the contact will not receive any type of host notifications.

service_notification_options This directive is used to define the service states for which notifications can be sent out
to this contact. Valid options are a combination of one or more of the following:

• w = notify on WARNING service states

• u = notify on UNKNOWN service states

• c = notify on CRITICAL service states

• r = notify on service recoveries (OK states)

• f = notify when the service starts and stops flapping.

• n = (none) : the contact will not receive any type of service notifications.

min_business_impact This directive is used to define the minimum business criticity level of a service/host the
contact will be notified. Please see root_problems_and_impacts for more details.

• 0 = less important

• 1 = more important than 0

• 2 = more important than 1

• 3 = more important than 2

• 4 = more important than 3

• 5 = most important

8.16 Realm Definition

8.16.1 Description

The realms are a optional feature useful if the administrator want to divide it’s resources like schedulers or pollers.

The Realm definition is optional. If no scheduler is defined, Shinken will “create” one for the user and will be the
default one.

8.16. Realm Definition 281

Shinken Documentation, Release 2.4

8.16.2 Definition Format

Variables in red are required, while those in black are optional. However, you need to supply at least one optional
variable in each definition for it to be of much use.

define realm{
realm_name realm_name
realm_members realm_members
default default
}

8.16.3 Example Definition:

define realm{
realm_name World
realm_members Europe,America,Asia
default 0

}

8.16.4 Variable Descriptions

realm_name This variable is used to identify the short name of the realm which the data is associated with.

realm_members This directive is used to define the sub-realms of this realms.

default This directive is used to define tis this realm is the default one (untagged host and satellites wil be put into it).
The default value is 0.

8.17 Arbiter Definition

8.17.1 Description

The Arbiter object is a way to define Arbiter daemons that will manage the configuration and all different architecture
components of shinken (like distributed monitoring and high availability). It reads the configuration, cuts it into parts
(N schedulers = N parts), and then sends them to all others elements. It manages the high availability part : if an
element dies, it re-routes the configuration managed by this falling element to a spare one. Its other role is to receive
input from users (like external commands of shinken.cmd) and send them to other elements. There can be only one
active arbiter in the architecture.

The Arbiter definition is optional. If no arbiter is defined, Shinken will “create” one for the user. There will be no high
availability for the Arbiter (no spare), and it will use the default port on the server where the daemon is launched.

8.17.2 Definition Format

Variables in red are required, while those in black are optional. However, you need to supply at least one optional
variable in each definition for it to be of much use.

282 Chapter 8. Config

Shinken Documentation, Release 2.4

define arbiter{
arbiter_name arbiter_name
address dns name of ip address
host_name hostname
port port
spare //[0/1]//
modules modules
timeout number of seconds to block the arbiter waiting for an answer
data_timeout seconds to wait when sending data to another satellite(daemon)
max_check_attempts number
check_interval seconds to wait before issuing a new check
accept_passive_unknown_check_results //[0/1]//
}

8.17.3 Example Definition:

define arbiter{
arbiter_name Main-arbiter
address node1.mydomain
host_name node1
port 7770
spare 0
modules module1,module2

}

8.17.4 Variable Descriptions

arbiter_name This variable is used to identify the short name of the arbiter with which the data will be associated
with.

address This directive is used to define the address from where the main arbiter can reach this arbiter (that can be
itself). This can be a DNS name or an IP address.

host_name This variable is used by the arbiters daemons to define which ‘arbiter’ object they are : all theses daemons
on different servers use the same configuration, so the only difference is their server name. This value must be
equal to the name of the server (like with the hostname command). If none is defined, the arbiter daemon will
put the name of the server where it’s launched, but this will not be tolerated with more than one arbiter (because
each daemons will think it’s the master).

port This directive is used to define the TCP port used by the daemon. The default value is 7770.

spare This variable is used to define if the daemon matching this arbiter definition is a spare one or not. The default
value is 0 (master/non-spare).

modules This variable is used to define all modules that the arbtier daemon matching this definition will load.

timeout This variable defines how much time the arbiter will block waiting for the response of a inter-process ping
(Pyro). 3 seconds by default. This operation will become non blocking when Python 2.4 and 2.5 is dropped in
Shinken 1.4.

data_timeout Data send timeout. When sending data to another process. 120 seconds by default.

max_check_attempts If ping fails N or more, then the node is considered dead. 3 attempts by default.

check_interval Ping node every N seconds. 60 seconds by default.

8.17. Arbiter Definition 283

Shinken Documentation, Release 2.4

accept_passive_unknown_check_results If this is enabled, the arbiter will accept passive check results for uncon-
figured hosts and will generate unknown host/service check result broks.

8.18 Scheduler Definition

8.18.1 Description

The Scheduler daemon is in charge of the scheduling checks, the analysis of results and follow up actions (like if a
service is down, ask for a host check). They do not launch checks or notifications. They keep a queue of pending
checks and notifications for other elements of the architecture (like pollers or reactionners). There can be many
schedulers.

The Scheduler definition is optionnal. If no scheduler is defined, Shinken will “create” one for the user. There will be
no high availability for it (no spare), and will use the default port in the server where the deamon is launched.

8.18.2 Definition Format

Variables in red are required, while those in black are optional. However, you need to supply at least one optional
variable in each definition for it to be of much use.

define scheduler{
scheduler_name scheduler_name
address dns name of ip address
port port
spare //[0/1]//
realm realm name
modules modules
accept_passive_unknown_check_results //[0/1]//
}

8.18.3 Example Definition:

define scheduler{
scheduler_name Europe-scheduler
address node1.mydomain
port 7770
spare 0
realm Europe

Optional parameters
spare 0 ; 1 = is a spare, 0 = is not a spare
weight 1 ; Some schedulers can manage more hosts than others
timeout 3 ; Ping timeout
data_timeout 120 ; Data send timeout
max_check_attempts 3 ; If ping fails N or more, then the node is dead
check_interval 60 ; Ping node every minutes
modules PickleRetention

Skip initial broks creation for faster boot time. Experimental feature
which is not stable.
skip_initial_broks 0

284 Chapter 8. Config

Shinken Documentation, Release 2.4

In NATted environments, you declare each satellite ip[:port] as seen by
this scheduler (if port not set, the port declared by satellite itself
is used)
satellitemap poller-1=1.2.3.4:1772, reactionner-1=1.2.3.5:1773, ...

}

8.18.4 Variable Descriptions

scheduler_name This variable is used to identify the short name of the scheduler which the data is associated with.

address This directive is used to define the address from where the main arbier can reach this scheduler. This can be
a DNS name or a IP address.

port This directive is used to define the TCP port used bu the daemon. The default value is 7768.

spare This variable is used to define if the scheduler must be managed as a spare one (will take the conf only if a
master failed). The default value is 0 (master).

realm This variable is used to define the realm where the scheduler will be put. If none is selected, it will be assigned
to the default one.

modules This variable is used to define all modules that the scheduler will load.

accept_passive_unknown_check_results If this is enabled, the scheduler will accept passive check results for un-
configured hosts and will generate unknown host/service check result broks.

8.19 Poller Definition

8.19.1 Description

The Poller object is a way to the Arbiter daemons to talk with a scheduler and give it hosts to manage. They are
in charge of launching plugins as requested by schedulers. When the check is finished they return the result to the
schedulers. There can be many pollers.

The Poller definition is optionnal. If no poller is defined, Shinken will “create” one for the user. There will be no high
availability for it (no spare), and will use the default port in the server where the deamon is launched.

8.19.2 Definition Format

Variables in red are required, while those in black are optional. However, you need to supply at least one optional
variable in each definition for it to be of much use.

define poller{
poller_name poller_name
address dns name of ip address
port port
spare //[0/1]//
realm realm name
manage_sub_realms [0,1]
poller_tags poller_tags
modules modules
}

8.19. Poller Definition 285

Shinken Documentation, Release 2.4

8.19.3 Example Definition:

define poller{
poller_name Europe-poller
address node1.mydomain
port 7771
spare 0

Optional parameters
manage_sub_realms 0
poller_tags DMZ, Another-DMZ
modules module1,module2
realm Europe
min_workers 0 ; Starts with N processes (0 = 1 per CPU)
max_workers 0 ; No more than N processes (0 = 1 per CPU)
processes_by_worker 256 ; Each worker manages N checks
polling_interval 1 ; Get jobs from schedulers each N seconds

}

8.19.4 Variable Descriptions

poller_name This variable is used to identify the short name of the poller which the data is associated with.

address This directive is used to define the address from where the main arbier can reach this poller. This can be a
DNS name or a IP address.

port This directive is used to define the TCP port used bu the daemon. The default value is 7771.

spare This variable is used to define if the poller must be managed as a spare one (will take the conf only if a master
failed). The default value is 0 (master).

realm This variable is used to define the realm where the poller will be put. If none is selected, it will be assigned to
the default one.

manage_sub_realms This variable is used to define if the poller will take jobs from scheduler from the sub-realms
of it’s realm. The default value is 0.

poller_tags This variable is used to define the checks the poller can take. If no poller_tags is defined, poller will take
all untagued checks. If at least one tag is defined, it will take only the checks that are also taggued like it. By
default, there is no poller_tag, so poller can take all untagued checks (default).

modules This variable is used to define all modules that the scheduler will load.

8.20 Reactionner Definition

8.20.1 Description

The Reactionner daemon is in charge of notifications and launching event_handlers. There can be more than one
Reactionner.

8.20.2 Definition Format

Variables in red are required, while those in black are optional. However, you need to supply at least one optional
variable in each definition for it to be of much use.

286 Chapter 8. Config

Shinken Documentation, Release 2.4

define reactionner{
reactionner_name reactionner_name
address dns name of ip address
port port
spare //[0/1]//
realm realm name
manage_sub_realms [0,1]
modules modules
}

8.20.3 Example Definition:

define reactionner{
reactionner_name Main-reactionner
address node1.mydomain
port 7769
spare 0
realm All

Optional parameters
manage_sub_realms 0 ; Does it take jobs from schedulers of sub-Realms?
min_workers 1 ; Starts with N processes (0 = 1 per CPU)
max_workers 15 ; No more than N processes (0 = 1 per CPU)
polling_interval 1 ; Get jobs from schedulers each 1 second
timeout 3 ; Ping timeout
data_timeout 120 ; Data send timeout
max_check_attempts 3 ; If ping fails N or more, then the node is dead
check_interval 60 ; Ping node every minutes
reactionner_tags tag1
modules module1,module2

}

8.20.4 Variable Descriptions

reactionner_name This variable is used to identify the short name of the reactionner which the data is associated
with.

address This directive is used to define the address from where the main arbier can reach this reactionner. This can
be a DNS name or a IP address.

port This directive is used to define the TCP port used bu the daemon. The default value is 7772.

spare This variable is used to define if the reactionner must be managed as a spare one (will take the conf only if a
master failed). The default value is 0 (master).

realm This variable is used to define the realm where the reactionner will be put. If none is selected, it will be assigned
to the default one.

manage_sub_realms This variable is used to define if the poller will take jobs from scheduler from the sub-realms
of it’s realm. The default value is 1.

modules This variable is used to define all modules that the reactionner will load.

reactionner_tags This variable is used to define the checks the reactionner can take. If no reactionner_tags is defined,
reactionner will take all untagued notifications and event handlers. If at least one tag is defined, it will take only
the checks that are also taggued like it.

8.20. Reactionner Definition 287

Shinken Documentation, Release 2.4

By default, there is no reactionner_tag, so reactionner can take all untagued notification/event handlers (default).

8.21 Broker Definition

8.21.1 Description

The Broker daemon provides access to Shinken internal data. Its role is to get data from schedulers (like status and
logs) and manage them. The management is done by modules. Many different modules exists : export to graphite,
export to syslog, export into ndo database (MySQL and Oracle backend), service-perfdata export, couchdb export and
more. To configure modules, consult the broker module definitions.

The Broker definition is optional.

8.21.2 Definition Format

Variables in red are required, while those in black are optional. However, you need to supply at least one optional
variable in each definition for it to be of much use.

define broker{
broker_name broker_name
address dns name of ip address
port port
spare //[0/1]//
realm realm name
manage_sub_realms [0,1]
modules modules
}

8.21.3 Example Definition:

define broker{
broker_name broker-1
address node1.mydomain
port 7772
spare 0
realm All
Optional
manage_arbiters 1
manage_sub_realms 1
timeout 3 ; Ping timeout
data_timeout 120 ; Data send timeout
max_check_attempts 3 ; If ping fails N or more, then the node is dead
check_interval 60 ; Ping node every minutes manage_sub_realms 1
modules livestatus,simple-log,webui

}

8.21.4 Variable Descriptions

broker_name This variable is used to identify the short name of the broker which the data is associated with.

address This directive is used to define the address from where the main arbier can reach this broker. This can be a
DNS name or a IP address.

288 Chapter 8. Config

Shinken Documentation, Release 2.4

port This directive is used to define the TCP port used bu the daemon. The default value is 7772.

spare This variable is used to define if the broker must be managed as a spare one (will take the conf only if a master
failed). The default value is 0 (master).

realm This variable is used to define the realm where the broker will be put. If none is selected, it will be assigned to
the default one.

manage_arbiters Take data from Arbiter. There should be only one broker for the arbiter.

manage_sub_realms This variable is used to define if the broker will take jobs from scheduler from the sub-realms
of it’s realm. The default value is 1.

modules This variable is used to define all modules that the broker will load. The main goal ofthe Broker is to give
status to theses modules.

8.21. Broker Definition 289

Shinken Documentation, Release 2.4

290 Chapter 8. Config

CHAPTER 9

Shinken Architecture

291

Shinken Documentation, Release 2.4

9.1 Arbiter supervision of Shinken processes

9.1.1 Introduction

Nobody is perfect, nor are OSes. A server can fail, and so does the network. That’s why you can (should) define
multiple processes as well as spares in the Shinken architecture.

9.1.2 Supervision method

The Arbiter daemon constantly checks that every one is alive. If a node is declared to be dead, the Arbiter will send
the configuration of this node to a spare one. Other satellites get the address of this new node so they can change their
connections.

The case where the daemon was still alive but that it was just a network interruption is also managed: There will be 2
nodes with the same configuration, but the Arbiter will ask one (the old one) to become inactive.

The spare node that has become active will not preemptively fail back to the original node.

9.1.3 Adjusting timers for large configurations

Supervision parameters need to be adjusted with extra large configurations that may need more time to startup or
process data. The arbiter periodically sends a verification to each process to see if it is alive. The timeouts and retry
for this can be adjusted.

Timeout should be left at 3 seconds, even for large configuration. Health checks are synchronous. This is due to
compatibility with Python 2.4. There will eventually become asynchronous as Python 2.6 support is dropped in the
future. Retries should be multiplied as need. Data timeout should be left as is.

Important: TODO Put all of the arbiter supervisory parameters with formulas and examples.

9.1.4 Diagrams

It can be shown in the following diagram:

292 Chapter 9. Shinken Architecture

Shinken Documentation, Release 2.4

9.1. Arbiter supervision of Shinken processes 293

Shinken Documentation, Release 2.4

9.2 Advanced architectures

Shinken has got some cool features in term of configuration management or performance, but it’s true added value is
in its architecture. It’s been designed to achieve easy distributed architecture and high availability.

9.2.1 Distributed architecture

The load balancing feature is very easy to obtain with Shinken. If I say that the project’s name comes from it you
should believe me :-)

In fact the load is present in 2 major places:

• pollers: they launch checks, they use a lot of resources

• schedulers: they schedule, potentially lots of checks

For both, a limit of 150000 checks/5min is a reasonable goal on an average server(4 cores@3Ghz). But remember that
is can be multiplied as much as you wish, just by adding another server.

There are 2 cases:

• checks that ask for a lot of performance (perl or shell scripts for example)

• a lot of scheduling (> 150000 checks in 5 minutes).

In the first case, you need to add more pollers. In the second, you need to add more schedulers. In this last case, you
should also add more pollers (more launch need more pollers) but that’s not compulsory.

But I already ear you asking “How to add new satellites?”. That’s very simple: You start by installing the application
on a new server (don’t forget the sinken user + application files). Let say that this new server is called server-2 and has
the IP 192.168.0.2 (remember that the “master” is called server-1 with 192.168.0.1 as IP).

Now you need to launch the scheduler and pollers (or just one of them if you want):

/etc/init.d/shinken-scheduler start
/etc/init.d/shinken-poller start

It looks like the launch in the master server? Yes, it’s the same :-)

Here you just launch the daemons, now you need to declare them in their respectively directories on the master server
(the one with the arbiter daemon). You need to add new entries for these satellites:

In /etc/shinken/schedulers/scheduler-master.cfg (create it if necessary):

define scheduler{

scheduler_name scheduler-2
address 192.168.0.2
port 7768
spare 0
}

In /etc/shinken/pollers/poller-master.cfg (create it if necessary):

define poller{

poller_name poller-2
address 192.168.0.2
port 7771

294 Chapter 9. Shinken Architecture

mailto:cores@3Ghz

Shinken Documentation, Release 2.4

spare 0
}

The differences with scheduler-1 and poller-1 are just the names and the address. Yep, that’s all :-)

Now you can restart the arbiter, and you’re done, the hosts will be distributed in both schedulers, and the checks will
be distributed to all pollers. Congrats :)

9.2.2 High availability architecture

Ok, a server can crash or a network can go down. The high availability is not a useless feature, you know?

With shinken, making a high availability architecture is very easy. Just as easy as the load balancing feature :)

You saw how to add new scheduler/poller satellites. For the HA it’s quite the same. You just need to add new satellites
in the same way you just did, and define them as “spares”. You can (should) do the same for all the satellites (a new
arbiter, reactionner and broker) for a whole HA architecture.

We keep the load balancing previous installation and we add a new server (if you do not need load balancing, just take
the previous server). So like the previous case, you need to install the daemons and launch them.

/etc/init.d/shinken-scheduler start
/etc/init.d/shinken-poller start

Nothing new here.

And we need to declare the new satellites in the directories near the arbiter:

In /etc/shinken/schedulers/scheduler-3.cfg (create it if necessary):

define scheduler{

scheduler_name scheduler-3
address 192.168.0.3
port 7768
spare 1
}

In /etc/shinken/pollers/poller-3.cfg (create it if necessary):

define poller{

poller_name poller-3
address 192.168.0.3
port 7771
spare 1

}

Do you see a difference here? Aside from the name and address, there is a new parameter: spare. From the daemon
point of view, they do not know if they are a spare or not. That’s the arbiter that says what they are.

You just need to restart the arbiter and you’ve got HA for the schedulers/pollers :)

Really?

Yes indeed, that’s all. Until one of the scheduler/poller fall, these two new daemons will just wait. If anyone falls, the
spare daemon will take the configuration and start to work.

9.2. Advanced architectures 295

Shinken Documentation, Release 2.4

You should do the same for arbiter, reactionner and broker. Just install them in the server-3 and declare them in the
reactionners and brokers directories file with a spare parameter. Now you’ve got a full HA architecture (and with load
balancing if you keep the server-2 :)).

Note: Here you have high availability, but if a scheduler dies, the spare takes the configuration, but not the saved
states. So it will have to reschedule all checks, and current states will be PENDING. To avoid this, you can link
distributed retention modules such as memcache to your schedulers

9.2.3 Mixed Architecture (poller GNU/Linux and Windows or LAN/DMZ)

There can be as many pollers as you want. And Shinken runs under a lot of systems, like GNU/Linux and Windows.
It could be useful to make windows hosts checks by a windows pollers (by a server IN the domain), and all the others
by a GNU/Linux one.

And in fact you can, and again it’s quite easy :) All pollers connect to all schedulers, so we must have a way to
distinguish ‘windows’ checks from ‘gnu/linux’ ones.

The poller_tag/poller_tags parameter is useful here. It can be applied on the following objects:

• pollers

• commands

• services

• hosts

It’s quite simple: you ‘tag’ objects, and the pollers have got tags too. You’ve got an implicit inheritance between
hosts->services->commands. If a command doesn’t have a poller_tag, it will take the one from the service. And if this
service doesn’t have one neither, it will take the tag from its host.

Let take an example with a ‘windows’ tag:

define command{

command_name
command_line c:\shinken\libexec\check_wmi.exe -H $HOSTADRESS$ -r $ARG1$
poller_tag Windows

}

define poller{

poller_name poller-windows
address 192.168.0.4
port 7771
spare 0
poller_tags Windows,DMZ

}

And the magic is here: all checks launched with this command will be taken by the poller-windows (or another that
has such a tag). A poller with no tags will only take ‘untagged’ commands.

It also works with a LAN/DMZ network. If you do not want to open all monitoring ports from the LAN to the DMZ
server, you just need to install a poller with the ‘DMZ’ tag in the DMZ and then add it to all hosts (or services) in the
DMZ. They will be taken by this poller and you just need to open the port to this poller from the LAN. Your network
admins will be happier :)

define host{

296 Chapter 9. Shinken Architecture

Shinken Documentation, Release 2.4

host_name server-DMZ-1
[...]
poller_tag DMZ
[...]

}

define service{

service_description CPU
host_name server-DMZ-2
[...]
poller_tag DMZ
[...]

}

And that’s all :)

9.2.4 Multi customers and/or sites: REALMS

The shinken’s architecture like we saw allows us to have a unique administration and data location. All pollers the
hosts are cut and sent to schedulers, and the pollers take jobs from all schedulers. Every one is happy.

Every one? In fact no. If an administrator got a continental distributed architecture he can have serious problems. If
the architecture is common to multile customers network, a customer A scheduler can have a customer B poller that
asks him jobs. It’s not a good solution. Even with distributed network, distant pollers should not ask jobs to schedulers
in the other continent, it’s not network efficient.

That is where the site/customers management is useful. In Shinken, it’s managed by the realms.

A realm is a group of resources that will manage hosts or hostgroups. Such a link will be unique: a host cannot be in
multiple realms. If you put a hostgroup in a realm, all hosts in this group will be in the realm (unless a host already
has the realm set, the host value will be taken).

A realm is:

• at least a scheduler

• at least a poller

• can have a reactionner

• can have a broker

In a realm, all realm pollers will take all realm schedulers jobs.

Important: Very important: there is only ONE arbiter (and a spare of couse) for ALL realms. The arbiter manages
all realms and all that is inside.

9.2.5 Sub-realms

A realm can have sub-realms. It doesn’t change anything for schedulers, but it can be useful for other satellites and
spares. Reactionners and brokers are linked to a realm, but they can take jobs from all sub-realms too. This way you
can have less reactionners and brokers (like we soon will see).

The fact that reactionners/brokers (and in fact pollers too) can take jobs from sub-schedulers is decided by the presence
of the manage_sub_realms parameter. For pollers the default value is 0, but it’s 1 for reactionners/brokers.

9.2. Advanced architectures 297

Shinken Documentation, Release 2.4

Important: WARNING: having multiple brokers for one scheduler is not a good idea: after the information is send,
it’s deleted from the scheduler, so each brokers will only got partial data!

9.2.6 An example ?

To make it simple: you put hosts and/or hostgroups in a realm. This last one is to be considered as a resources pool.
You don’t need to touch the host/hostgroup definition if you need more/less performances in the realm or if you want
to add a new satellites (a new reactionner for example).

Realms are a way to manage resources. They are the smaller clouds in your global cloud infrastructure :)

If you do not need this feature, that’s not a problem, it’s optional. There will be a default realm created and every one
will be put into.

It’s the same for hosts that don’t have a realm configured: they will be put in the realm that has the “default” parameter.

9.2.7 Picture example

Diagrams are good :)

Let’s take two examples of distributed architectures around the world. In the first case, the administrator don’t want
to share resources between realms. They are distinct. In the second, the reactionners and brokers are shared with all
realms (so all notifications are send from a unique place, and so is all data).

Here is the isolated one:

And a more common way of sharing reactionner/broker:

298 Chapter 9. Shinken Architecture

Shinken Documentation, Release 2.4

Like you can see, all elements are in a unique realm. That’s the sub-realm functionality used for reactionner/broker.

9.2.8 Configuration of the realms

Here is the configuration for the shared architecture:

define realm {

realm_name All
realm_members Europe,US,Asia
default 1 ;Is the default realm. Should be unique!

}
define realm{

realm_name Europe
realm_members Paris ;This realm is IN Europe

}

An now the satellites:

define scheduler{

scheduler_name scheduler_Paris
realm Paris ;It will only manage Paris hosts

}
define reactionner{

reactionner_name reactionner-master
realm All ;Will reach ALL schedulers

}

9.2. Advanced architectures 299

Shinken Documentation, Release 2.4

And in host/hostgroup definition:

define host{

host_name server-paris
realm Paris ;Will be put in the Paris realm
[...]

}

define hostgroups{

hostgroup_name linux-servers
alias Linux Servers
members srv1,srv2
realm Europe ;Will be put in the Europe realm

}

9.3 How are commands and configurations managed in Shinken

Let’s take a look at how the dispatching is managed.

Shinken uses different daemons: each one has it’s own task. The global master is the Arbiter: it reads the configuration,
divides it into parts and sends the parts to various Shinken daemons. It also looks at which daemon are alive: if one
dies, it will give the configuration of the dead one to another daemon so that it can replace it.

9.3.1 Configuration dispatching

It looks like this:

300 Chapter 9. Shinken Architecture

Shinken Documentation, Release 2.4

9.3.2 Configuration changes on running systems

Once the configuration is being dispatched to a Shinken process by the Arbiter, this causes the process (ex. Scheduler)
to stop and reload its configuration. Thus for small configurations, the monitoring gap, where no monitoring is being
done, is of an inconsequential duration. However, as the number of services rises above 10K and as the complexity of
the configuration grows, the monitoring gap will become noticeable to the order of minutes. This gap will impact the
type of SLA the monitoring solution can meet.

Important: The 1.2 release is mandatory for anyone using more than 10K services as it includes improvements
addressing this issue.

9.3.3 External commands dispatching

Method 1 - Via the Arbiter daemon

The user can send external commands to the system to raise a downtime or ask for passive checks. The commands
should be sent to the only daemon that orchestrates everything in the system (the only one the user should know about):
the Arbiter. It gives him the external commands (in a name pipe from now) and the Arbiter sends it to whoever needs
it (just one scheduler or all of them).

It looks like this:

Method 2 - Via the Livestatus API

The Livestatus API is a Broker daemon module. It listens on the network for data requests or external commands.
Commands can be authenticated. Commands can be submitted via a Python interface or a JSON interface. Consult
the MK Livestatus documentation for the supported parameters.

9.3. How are commands and configurations managed in Shinken 301

Shinken Documentation, Release 2.4

9.4 Problems and impacts correlation management

9.4.1 What is this correlation ?

The main role of this feature is to allow users to have the same correlation views in the console than they got in the
notifications.

From now, users won”t get notified if there was a dependency problem or example (a host in DOWN make the service
notifications to not be send for example). But in the console, we still got some green and red indicators: the scheduler
waited for actual checks to put the elements in a UNKNOWN or UNREACHABLE state when he already know that
there was a dependency problem.

Now it”s smart enough to put such states to elements that we know the check will fail. An example?

Imagine such a parent relations between hosts:

If gw is DOWN, all checks for others elements will put UNREACHABLE state. But if the fw and servers are checks 5
minutes later, during this period, the console will still have green indicators for them. And are they really green? No.
We know that future checks will put them in errors. That why the problems/impacts feature do: when the gateway is
set in HARD/DOWN, it apply a UNREACHABLE (and UNKNOWN for services) states for others elements below.
So the administrators in front of his desk saw directly that there is a problem, and what are the elements impacted.

It”s important to see that such state change do not interfere with the HARD/SOFT logic: it”s just a state change for
console, but it”s not taken into account as a checks attempt.

Here gateway is already in DOWN/HARD. We can see that all servers do not have an output: they are not already
checked, but we already set the UNREACHABLE state. When they will be checks, there will be an output and they
will keep this state.

302 Chapter 9. Shinken Architecture

Shinken Documentation, Release 2.4

9.4.2 How to enable it?

It’s quite easy, all you need is to enable the parameter

enable_problem_impacts_states_change=1

See enable_problem_impacts_states_change for more information about it.

9.4.3 Dynamic Business Impact

There is a good thing about problems and impacts when you do not identify a parent devices Business Impact: your
problem will dynamically inherit the maximum business impact of the failed child!

Let take an example: you have a switch with different children, one is a devel environment with a low business impact
(0 or 1) and one with a huge business impact (4 or 5). The network administrator has set SMS notification at night but
only for HUGE business impacts (min_criticity=4 in the contact definition for example).

It’s important to say that the switch DOES NOT HAVE ITS OWN BUSINESS IMPACT DEFINED! A switch is there
to server applications, the only business impact it gets is the child hosts and services that are connected to it!

There are 2 nights:

• the first one, the switch got a problem, and only the devel environment is impacted. The switch will inherit
the maximum impact of its impacts (or it own value if it’s higher, it’s 3 by default for all elements). Here
the devel impact is 0, the switch one is 3, so its impact will stay at 3. It’s slower than the contact value, so
the notification will not be send, the admin will be able to sleep :)

• the second night, the switch got a problem, but this time it impacts the production environment! This time,
the computed impact is set at 5 (the one of the max impact, here the production application), so it’s higher
than the min_criticity of the contact, so the notification is send. The admin is awaken, and can solve this
problem before too many users are impacted :)

9.5 Shinken Architecture

9.5.1 Summary

Shinken’s architecture has been designed according to the Unix Way: one tool, one task. Shinken has an architecture
where each part is isolated and connects to the others via standard interfaces. Shinken is based on a HTTP backend.
This makes building a highly available or distributed monitoring architectures quite easy.

• Shinken gets data IN

– passively

– actively

– Networked API

• Shinken acts on the data

– Correlation

– Event suppression

– Event handlers

– Adding new poller daemons

– Runtime interaction

9.5. Shinken Architecture 303

Shinken Documentation, Release 2.4

• Shinken gets data OUT

– Networked API

– Notifications

– Logging

– Web/Mobile Frontend (via API and Native WebUI)

– Metrics databases

• Shinken manages configurations

– Discovery manager SkonfUI

– Multi-level discovery engine

– Configuration Packs (commands, config templates, graph templates, etc.)

– Text file management via configuration engines (cfengine, chef, puppet, salt)

9.5.2 Shinken innovative features

Learn more about the innovative features of Shinken.

9.5.3 Shinken data acquisition for monitoring

Shinken needs plugins to actually gather data. There exists **thousands** of plugins for every conceivable application.
Shinken packages the configurations necessary to use common plugins in Packs. Plugins themselves need to be
installed by the administrator of the monitoring solution(Shinken will install some common ones for you). This is a
great strength and flexibility of Shinken, but also an administrative responsibility to download and install the necessary
plugins.

304 Chapter 9. Shinken Architecture

http://exchange.nagios.org/directory/Plugins

Shinken Documentation, Release 2.4

9.5.4 Architecture diagram with all daemons illustrated

9.5.5 Shinken Daemon roles

• Arbiter: The arbiter daemon reads the configuration, divides it into parts (N schedulers = N parts), and distributes
them to the appropriate Shinken daemons. Additionally, it manages the high availability features: if a particular
daemon dies, it re-routes the configuration managed by this failed daemon to the configured spare. Finally, it
can receive input from users (such as external commands from nagios.cmd) or passive check results and routes
them to the appropriate daemon. Passive check results are forwarded to the Scheduler responsible for the check.
There can only be one active arbiter with other arbiters acting as hot standby spares in the architecture.

– Modules for data collection: NSCA, TSCA, Ws_arbiter (web service)

– Modules for configuration data storage: MongoDB

– Modules for status retention: PickleRententionArbiter

– Modules for configuration import: MySQLImport, GLPI, Landscape(Ubuntu)

– Modules for configuration modification: vmware autolinking, IP_Tag, and other task specific modules

• Scheduler: The scheduler daemon manages the dispatching of checks and actions to the poller and reactionner
daemons respectively. The scheduler daemon is also responsible for processing the check result queue, analyzing
the results, doing correlation and following up actions accordingly (if a service is down, ask for a host check).
It does not launch checks or notifications. It just keeps a queue of pending checks and notifications for other
daemons of the architecture (like pollers or reactionners). This permits distributing load equally across many
pollers. There can be many schedulers for load-balancing or hot standby roles. Status persistence is achieved
using a retention module.

– Modules for status retention: pickle, nagios, memcache, redis and MongoDB are available.

9.5. Shinken Architecture 305

Shinken Documentation, Release 2.4

• Poller: The poller daemon launches check plugins as requested by schedulers. When the check is finished it
returns the result to the schedulers. Pollers can be tagged for specialized checks (ex. Windows versus Unix,
customer A versus customer B, DMZ) There can be many pollers for load-balancing or hot standby spare roles.

– Module for data acquisition: NRPE Module

– Module for data acquisition: CommandFile (Used for check_mk integration which depends on the na-
gios.cmd named pipe)

– Module for data acquisition: SnmpBooster (NEW)

• Reactionner: The reactionner daemon issues notifications and launches event_handlers. This centralizes com-
munication channels with external systems in order to simplify SMTP authorizations or RSS feed sources (only
one for all hosts/services). There can be many reactionners for load-balancing and spare roles

– Module for external communications: AndroidSMS

• Broker: The broker daemon exports and manages data from schedulers. The broker uses modules exclusively
to get the job done. The main method of interacting with Shinken is through the Livestatus API. Learn how to
configure the Broker modules.

– Modules for the Livestatus API - live state, status retention and history: SQLite (default), MongoDB
(experimental)

– Module for centralizing Shinken logs: Simple-log (flat file)

– Modules for data retention: Pickle , ToNdodb_Mysql, ToNdodb_Oracle, couchdb

– Modules for exporting data: Graphite-Perfdata, NPCDMOD(PNP4Nagios), raw_tcp(Splunk), Syslog

– Modules for the Shinken WebUI: GRAPHITE_UI, PNP_UI. Trending and data visualization.

– Modules for compatibility/migration: Service-Perfdata, Host-Perfdata and Status-Dat

• Receiver (optional): The receiver daemon receives passive check data and serves as a distributed command
buffer. There can be many receivers for load-balancing and hot standby spare roles. The receiver can also use
modules to accept data from different protocols. Anyone serious about using passive check results should use
a receiver to ensure that check data does not go through the Arbiter (which may be busy doing administrative
tasks) and is forwarded directly to the appropriate Scheduler daemon(s).

– Module for passive data collection: NSCA, TSCA, Ws_arbiter (web service)

Tip: The various daemons can be run on a single server for small deployments or split on different hardware for larger
deployments as performance or availability requirements dictate. For larger deployments, running multiple Schedulers
is recommended, even if they are on the same server. Consult planning a large scale Shinken deployment for more
information.

9.5.6 Learn more about the Shinken Distributed Architecture

The Shinken distributed architecture, more features explained.

• Smart and automatic load balancing

• High availability

• Specialized Pollers

• Advanced architectures: Realms

If you are just starting out, you can continue on with the next tutorial, which will help you Configure a web front-end.

306 Chapter 9. Shinken Architecture

Shinken Documentation, Release 2.4

9.5.7 Planning a large scale Shinken deployment

If you wish to plan a large scale installation of Shinken, you can consult the Scaling Shinken reference.

This is essential to avoid making time consuming mistakes and aggravation.

9.5. Shinken Architecture 307

Shinken Documentation, Release 2.4

308 Chapter 9. Shinken Architecture

CHAPTER 10

Troubleshooting

309

Shinken Documentation, Release 2.4

10.1 FAQ - Shinken troubleshooting

10.1.1 FAQ Summary

Shinken users, developers, administrators possess a body of knowledge that usually provides a quick path to problem
resolutions. The Frequently Asked Questions questions are compiled from user questions and issues developers may
run into.

Have you consulted at all the resources available for users and developers.

__Before posting a question to the forum:__

• Read the through the Getting Started tutorials

• Search the documentation wiki

• Use this FAQ

• Bonus: Update this FAQ if you found the answer and think it would benefit someone else

Doing this will improve the quality of the answers and your own expertise.

Frequently asked questions

• How to set my daemons in debug mode to review the logs?

• I am getting an OSError read-only filesystem

• I am getting an OSError [Errno 24] Too many open files

• Notification emails have generic-host instead of host_name

General Shinken troubleshooting steps to resolve common issue

• Have you mixed installation methods! Cleanup and install using a single method.

• Have you installed the check scripts and addon software

• Is Shinken even running?

• Have you checked the Shinken pre-requisites?

• Have you configured the WebUI module in your brokers/broker-master.cfg file

• Have you completed the Shinken basic configuration and Shinken WebUI configuration

• Have you reviewed your Shinken centralized (Simple-log broker module) logs for errors

• Have you reviewed your Shinken daemon specific logs for errors or tracebacks (what the system was doing just
before a crash)

• Have you reviewed your configuration syntax (keywords and values)

• Is what you are trying to use installed? Are its dependencies installed! Does it even work.

• Is what you are trying to use a supported version?

• Are you using the same Python Pyro module version on all your hosts running a Shinken daemon (You have to!)

• Are you using the same Python version on all your hosts running a Shinken daemon (You have to!)

• Have you installed Shinken with the SAME prefix (ex: /usr/local) on all your hosts running a Shinken daemon
(You have to!)

310 Chapter 10. Troubleshooting

Shinken Documentation, Release 2.4

• Have you enabled debugging logs on your daemon(s)

• How to identify the source of a Pyro MemoryError

• Problem with Livestatus, did it start, is it listening on the expected TCP port, have you enabled and configured
the module in /etc/shinken/modules/livestatus.cfg.

• Have you installed the check scripts as the shinken user and not as root

• Have you executed/tested your command as the shinken user

• Have you manually generated check results

• Can you connect to your remote agent NRPE, NSClient++, etc.

• Have you defined a module on the wrong daemon (ex. NSCA receiver module on a Broker)

• Have you created a diagram illustrating your templates and inheritance

• System logs (/var/messages, windows event log)

• Application logs (MongoDB, SQLite, Apache, etc)

• Security logs (Filters, Firewalls operational logs)

• Use top or Microsoft Task manager or process monitor (Microsoft sysinternals tools) to look for memory, cpu
and process issues.

• Use nagiostat to check latency and other core related metrics.

• Is your check command timeout too long

• Have you looked at your Graphite Carbon metrics

• Can you connect to the Graphite web interface

• Are there gaps in your data

• Have you configured your storage schema (retention interval and aggregation rules) for Graphite collected data.

• Are you sending data more often than what is expected by your storage schema.

• Storing data to the Graphite databases, are you using the correct IP, port and protocol, are both modules enabled;
Graphite_UI and graphite export.

10.1.2 FAQ Answers

Review the daemon logs

A daemon is a Shinken process. Each daemon generates a log file by default. If you need to learn more about what
is what, go back to the shinken architecture. The configuration of a daemon is set in the .ini configuration file(ex.
brokerd.ini). Logging is enabled and set to level INFO by default.

Default log file location ‘’local_log=%(workdir)s/schedulerd.log’‘

The log file will contain information on the Shinken process and any problems the daemon encounters.

Changing the log level during runtime

shinken-admin is a command line script that can change the logging level of a running daemon.

‘’linux-server# ./shinken-admin ...’‘

10.1. FAQ - Shinken troubleshooting 311

Shinken Documentation, Release 2.4

Changing the log level in the configuration

Edit the <daemon-name>.ini file, where daemon name is pollerd, schedulerd, arbiterd, reactionnerd, receiverd. Set the
log level to: DEBUG Possible values: DEBUG,INFO,WARNING,ERROR,CRITICAL

Re-start the Shinken process.

OSError read-only filesystem error

You poller daemon and reactionner daemons are not starting and you get a traceback for an OSError in your logs.

‘’OSError [30] read-only filesystem’‘

Execute a ‘mount’ and verify if /tmp or /tmpfs is set to ‘ro’ (Read-only). As root modify your /etc/fstab to set the
filesystem to read-write.

OSError too many files open

The operating system cannot open anymore files and generates an error. Shinken opens a lot of files during runtime,
this is normal. Increase the limits.

Google: changing the max number of open files linux / debian / centos / RHEL

cat /proc/sys/fs/file-max

su - shinken $ ulimit -Hn $ ulimit -Sn

This typically changing a system wide file limit and potentially user specific file limits. (ulimit, limits.conf, sysctl,
sysctl.conf, cat /proc/sys/fs/file-max)

To immediately apply changes ulimit -n xxxxx now

Notification emails have generic-host instead of host_name

Try defining host_alias, which is often the field used by the notification methods.

Why does Shinken use both host_alias and host_name. Flexibility and historicaly as Nagios did it this way.

312 Chapter 10. Troubleshooting

CHAPTER 11

Integration With Other Software

313

Shinken Documentation, Release 2.4

11.1 Integration Overview

11.1.1 Introduction

One of the reasons that Shinken is such a popular monitoring application is the fact that it can be easily integrated into
your existing infrastructure. There are several methods of integrating Shinken with the management software you’re
already using and you can monitor almost any type of new or custom hardware, service, or application that you might
have.

11.1.2 Integration Points

Important: This diagram is deprecated and illustrates legacy Nagios. Which has nothing to do with the new archi-
tecture. eck.

To monitor new hardware, services, or applications, check out the docs on:

• Nagios Plugins

• Nagios Plugin API

• Passive Checks

• Event Handlers

It is also possible to use Shinken Poller daemon modules or Receiver daemon modules to
provide daemonized high performance acquisition. Consult the Shinken architecture to learn
more about poller modules. There are existing poller modules that can be usd as examples to
further extend Shinken.

314 Chapter 11. Integration With Other Software

Shinken Documentation, Release 2.4

To get data into Nagios from external applications, check out the docs on:

• Passive Checks

• External Commands

To send status, performance, or notification information from Shinken to external applications, there are two typical
paths. Through the Reactionner daemon which executes event handlers and modules or through the Broker daemon.
The broker daemon provides access to all internal Shinken objects and state information. Thi data can be accessed
through the Livestatus API. The data can also be forwarded by broker modules. Check out the docs on:

• Broker modules

• Event Handlers

• OCSP and OCHP Commands

• Performance Data

• Notifications

11.1.3 Integration Examples

I’ve documented some examples on how to integrate Shinken with external applications:

• TCP Wrappers Integration (security alerts)

• SNMP Trap Integration (Arcserve backup job status)

11.2 SNMP Trap Integration

11.2.1 Introduction

Nagios is not designed to be a replacement for a full-blown “SNMP” management application like HP OpenView or
OpenNMS. However, you can set things up so that “SNMP” traps received by a host on your network can generate
alerts in Nagios. Specific traps or groups of traps are associated with passive services.

As if designed to make the Gods of Hypocrisy die of laughter, “SNMP” is anything but simple. Translating “SNMP”
traps and getting them into Nagios (as passive check results) can be a bit tedious. To make this task easier, I suggest
you check out Alex Burger’s “SNMP” Trap Translator project located at http://www.snmptt.org. When combined with
Net-“SNMP”, SNMPTT provides an enhanced trap handling system that can be integrated with Nagios.

You are strongly suggested to eventually have a logging system, SNMP manager or Hypervisor to classify and identify
new alerts and events.

11.2. SNMP Trap Integration 315

http://www.opennms.org/
http://www.snmptt.org/

Shinken Documentation, Release 2.4

11.3 TCP Wrappers Integration

11.3.1 Introduction

This document explains how to easily generate alerts in Shinken for connection attempts that are rejected by TCP
wrappers. For example, if an unauthorized host attempts to connect to your “SSH” server, you can receive an alert in
Shinken that contains the name of the host that was rejected. If you implement this on your Linux/Unix boxes, you’ll
be surprised how many port scans you can detect across your network.

These directions assume:

• You are already familiar with Passive Checks and how they work.

• You are already familiar with Volatile Services and how they work.

• The host which you are generating alerts for (i.e. the host you are using TCP wrappers on) is a remote host
(called firestorm in this example). If you want to generate alerts on the same host that Shinken is running you
will need to make a few modifications to the examples I provide.

• You have installed the NSCA daemon on your monitoring server and the NSCA client (send_nsca) on the
remote machine that you are generating TCP wrapper alerts from.

11.3.2 Defining A Service

If you haven’t done so already, create a host definition for the remote host (firestorm).

Next, define a service in one of your object configuration files for the TCP wrapper alerts on host firestorm. The
service definition might look something like this:

define service {
host_name firestorm
service_description TCP Wrappers
is_volatile 1
active_checks_enabled 0
passive_checks_enabled 1
max_check_attempts 1
check_command check_none
...
}

There are some important things to note about the above service definition:

316 Chapter 11. Integration With Other Software

Shinken Documentation, Release 2.4

• The volatile option enabled. We want this option enabled because we want a notification to be generated for
every alert that comes in.

• Active checks of the service as disabled, while passive checks are enabled. This means that the service will
never be actively checked by Shinken - all alert information will have to be received passively from an external
source.

• The “max_check_attempts” value is set to “1”. This guarantees you will get a notification when the first alert is
generated.

11.3.3 Configuring TCP Wrappers

Now you’re going to have to modify the /etc/hosts.deny file on firestorm. In order to have the TCP wrappers send an
alert to the monitoring host whenever a connection attempt is denied, you’ll have to add a line similar to the following:

ALL: ALL: RFC931: twist (/var/lib/shinken/libexec/eventhandlers/handle_tcp_wrapper %h %d)&

This line assumes that there is a script called handle_tcp_wrapper in the “/var/lib/shinken/libexec/eventhandlers/”
directory on firestorm. We’ll write that script next.

11.3.4 Writing The Script

The last thing you need to do is write the handle_tcp_wrapper script on firestorm that will send the alert back to the
Shinken server. It might look something like this:

#!/bin/sh
/var/lib/shinken/libexec/eventhandlers/submit_check_result firestorm "TCP Wrappers" 2 "Denied $2-$1" > /dev/null 2> /dev/null

Notice that the handle_tcp_wrapper script calls the submit_check_result script to actually send the alert back to the
monitoring host. Assuming your Shinken server is called monitor, the submit_check_result script might look like
this:

#!/bin/sh
Arguments
$1 = name of host in service definition
$2 = name/description of service in service definition
$3 = return code
$4 = outputs

/bin/echo -e "$1\t$2\t$3\t$4\n" | /var/lib/shinken/libexec/send_nsca monitor -c /etc/shinken/send_nsca.cfg

11.3.5 Finishing Up

You’ve now configured everything you need to, so all you have to do is restart the inetd process on firestorm and restart
Shinken on your monitoring server. That’s it! When the TCP wrappers on firestorm deny a connection attempt, you
should be getting alerts in Shinken. The plugin output for the alert will look something like the following: “Denied
sshd2-sdn-ar-002mnminnP321.dialsprint.net”

11.3. TCP Wrappers Integration 317

Shinken Documentation, Release 2.4

11.4 Use Shinken with Thruk

11.4.1 Thruk

• Homepage: http://www.thruk.org/

• Screenshots: http://www.thruk.org/images/screenshots/screenshots.html

• Description: “Thruk is an independent multibackend monitoring webinterface which currently supports Nagios,
Icinga and Shinken as backend using the Livestatus addon. It is designed to be a “dropin” replacement. The
target is to cover 100% of the original features plus additional enhancements for large installations.”

• License: GPL v2

• Shinken dedicated forum: http://forum.shinken-monitoring.org/forums/14-Use-with-Thruk

11.4.2 Install Thruk

See Thruk installation documentation.

Note: if you’re using SELinux, also run:

chcon -t httpd_sys_script_exec_t /usr/share/thruk/fcgid_env.sh
chcon -t httpd_sys_script_exec_t /usr/share/thruk/script/thruk_fastcgi.pl
chcon -R -t httpd_sys_content_rw_t /var/lib/thruk/
chcon -R -t httpd_sys_content_rw_t /var/cache/thruk/
chcon -R -t httpd_log_t /var/log/thruk/
setsebool -P httpd_can_network_connect on

318 Chapter 11. Integration With Other Software

http://www.thruk.org/
http://www.thruk.org/images/screenshots/screenshots.html
http://forum.shinken-monitoring.org/forums/14-Use-with-Thruk
http://www.thruk.org/documentation.html#_installation

Shinken Documentation, Release 2.4

11.4.3 Using Shinken with Thruk

Thruk communicates with Shinken through the LiveStatus module. If you used the sample configuration, everything
should be ready already. :)

You can review the configuration using the two following steps.

Enable Livestatus module

See enable Livestatus module.

Declare Shinken peer in Thruk

Edit ‘’/etc/thruk/thruk_local.conf” and declare the Shinken peer:

enable_shinken_features = 1
<Component Thruk::Backend>

<peer>
name = External Shinken
type = livestatus
<options>

peer = 127.0.0.01:50000
</options>
Uncomment the following lines if you want to configure shinken through Thruk
#<configtool>
core_type = shinken
core_conf = /etc/shinken/shinken.cfg
obj_check_cmd = service shinken check
obj_reload_cmd = service shinken restart
#</configtool>

</peer>
</Component>

Or use the backend wizard which starts automatically upon first installation.

Don’t forget to change the 127.0.0.1 with the IP/name of your broker if it is installed on an different host, or if you are
using a distributed architecture with multiple brokers!

Credit Shinken in the webpages title :-)

Edit ‘’/etc/thruk/thruk.conf’‘:

title_prefix = Shinken+Thruk-

Configure users

Passwords are stored in ‘’/etc/thruk/htpasswd” and may be modified using the ‘’htpasswd” command from Apache:

htpasswd /etc/thruk/htpasswd your_login

User permissions: modify ‘’templates.cfg:generic-contact’‘:

I couldn't manage to get Thruk-level permissions to work, let's use Shinken admins privileges
can_submit_commands 0

11.4. Use Shinken with Thruk 319

Shinken Documentation, Release 2.4

and define some users as admins in the Shinken configuration:

define contact {

...

use generic-contact
is_admin 1

...
}

Allow Thruk to modify its configuration file:

chgrp apache /etc/thruk/cgi.cfg
chmod g+w /etc/thruk/cgi.cfg

Set permissions for your users in Config Tool > User Settings > authorized_for_...

11.4.4 Using PNP4Nagios with Thruk

See PNP4Nagios. The parameters below are deprecated and are only useful if you use the old Nagios CGI UI.

11.5 Nagios CGI UI

11.5.1 Object Cache File

Format:

object_cache_file=<file_name>

Example:

object_cache_file=/var/lib/shinken/objects.cache

This directive is used to specify a file in which a cached copy of Object Configuration Overview should be stored. The
cache file is (re)created every time Shinken is (re)started.

11.5.2 Temp File

Format: temp_file=<file_name>
Example: temp_file=/var/lib/shinken/nagios.tmp

This is a temporary file that Nagios periodically creates to use when updating comment data, status data, etc. The file
is deleted when it is no longer needed.

11.5.3 Temp Path

Format: temp_path=<dir_name>
Example: temp_path=/tmp

This is a directory that Nagios can use as scratch space for creating temporary files used during the monitoring process.
You should run tmpwatch, or a similar utility, on this directory occasionally to delete files older than 24 hours.

320 Chapter 11. Integration With Other Software

Shinken Documentation, Release 2.4

11.5.4 Status File

Format: status_file=<file_name>
Example: status_file=/var/lib/shinken/status.dat

This is the file that Nagios uses to store the current status, comment, and downtime information. This file is used by
the CGIs so that current monitoring status can be reported via a web interface. The CGIs must have read access to this
file in order to function properly. This file is deleted every time Nagios stops and recreated when it starts.

11.5.5 Status File Update Interval

Format: status_update_interval=<seconds>
Example: status_update_interval=15

This setting determines how often (in seconds) that Nagios will update status data in the Status File. The minimum
update interval is 1 second.

11.6 Thruk interface

Thruk is a web interface to get feedback about shinken status. You can also send command for asking shinken a new
check, set a downtime on a host etc.

11.6. Thruk interface 321

Shinken Documentation, Release 2.4

11.7 Use Shinken with ...

11.7.1 Shinken interface

Administrators need a means to view status data and interact with the system.

If you install Shinken using the 10 minutes installation recommended method, you will have the Shinken WebUI in-
stalled. But it is not mandatory to use it, and you may prefer another interface. There are open-source and commercial
web frontends using the Livestatus API or an SQL backend available to suit any needs.

11.7.2 Web interfaces

The choice of an interface starts with the method of data exchange: Those based on Livestatus and those based on an
SQL backend.

322 Chapter 11. Integration With Other Software

Shinken Documentation, Release 2.4

The most responsive interfaces are the native WebUI and those based on Livestatus. The most scalable and flexible
are those based on Livestatus.

SkonfUI is a discovery and configuration management UI that is not production ready and is meant as a beta preview
for developers not users. Sorry.

11.7.3 Direct memory access based interface

• Shinken WebUI, included in the Shinken installation. Previews the Shinken features in an attractive package.
Not meant for distributed deployments or scalability.

11.7.4 Livestatus based interfaces (Networked API)

• Thruk

11.7. Use Shinken with ... 323

Shinken Documentation, Release 2.4

• Multisite

• Complimentary module: Nagvis (Graphical representation)

324 Chapter 11. Integration With Other Software

Shinken Documentation, Release 2.4

11.7.5 Pickle based data export (Network)

• Complimentary module: Graphite

• Note: Integrated out-of-the-box in :ref:‘Shinken WebUI <integrationwithothersoftwarewebui>‘

11.7.6 Other

• Complimentary module: PNP4Nagios (Graphing interface)

11.7. Use Shinken with ... 325

Shinken Documentation, Release 2.4

11.7.7 Deprecated: Flat file export

• Old CGI & VShell Note: The Nagios CGI web interface is deprecated.

326 Chapter 11. Integration With Other Software

Shinken Documentation, Release 2.4

11.7.8 Which one is right for me?

Try them out and see which one fits best; this is especially easy with the Shinken WebUI and the Livestatus based
interfaces.

• For users just starting out with small to medium installations, Thruk or Shinken’s WebUI are good choices;

• For maximum scalability, intuitive UI and a solid feature set Multisite is recommended. Thruk is perl/PHP
based UI that is very feature complete which also provides some scalability.

11.8 Use Shinken with Centreon

11.8.1 Centreon

Centreon is a famous French monitoring solution based on Nagios, which can also be used with Shinken.

• Homepage: http://www.centreon.com/

• Screenshots: http://www.centreon.com/Content-Products-IT-network-monitoring/screenshots-for-centreon-it-
monitoring-centreon

• Description: “Centreon is an Open Source software package that lets you supervise all the infrastructures and
applications comprising your information system”

• License: GPL v2

• Shinken dedicated forum: http://www.shinken-monitoring.org/forum/index.php/board,8.0.html

11.8.2 How to use Shinken as a Centreon backend

The following Shinken Broker modules are required:

11.8. Use Shinken with Centreon 327

http://www.centreon.com/
http://www.centreon.com/Content-Products-IT-network-monitoring/screenshots-for-centreon-it-monitoring-centreon
http://www.centreon.com/Content-Products-IT-network-monitoring/screenshots-for-centreon-it-monitoring-centreon
http://www.shinken-monitoring.org/forum/index.php/board,8.0.html

Shinken Documentation, Release 2.4

• NDO/MySQL

• Simple log

• Flat file perfdata

Below is the configuration you should set (there is already sample configuration files in your ‘’/etc/shinken/” directory)

Simple log

The module simple_log puts all Shinken’s logs (Arbiter, Scheduler, Poller, etc.) into a single file.

In ‘’/etc/shinken/modules/simple-log.cfg’‘:

define module{
module_name Simple-log
module_type simple_log
path /var/lib/shinken/shinken.log
archive_path /var/lib/shinken/archives/

}

It takes these parameters:

• module_name: name of the module called by the brokers

• module_type: simple_log

• path: path of the log file

NDO/MySQL

The module ndodb_mysql exports all data into a NDO MySQL database.

It needs the python module MySQLdb (Debian: ‘’sudo apt-get install python-mysqldb’‘, or ‘’easy_install MySQL-
python’‘)

In ‘’/etc/shinken/modules/ndodb_mysql.cfg’‘:

define module{
module_name ToNdodb_Mysql
module_type ndodb_mysql
database ndo ; database name
user root ; user of the database
password root ; must be changed
host localhost ; host to connect to
character_set utf8 ;optional, default: utf8

}

It takes the following parameters:

• module_name: name of the module called by the brokers

• module_type: ndodb_mysql

• database: database name (ex ndo)

• user: database user

• password: database user passworddt

• host: database host

• character_set: utf8 is a good one

328 Chapter 11. Integration With Other Software

Shinken Documentation, Release 2.4

Service Perfdata

The module service_perfdata exports service’s perfdata to a flat file.

In ‘’/etc/shinken/modules/perfdata-service.cfg’‘:

define module{
module_name Service-Perfdata
module_type service_perfdata
path /var/lib/shinken/service-perfdata

}

It takes the following parameters:

• module_name: name of the module called by the brokers

• module_type: service_perfdata

• path: path to the service perfdata file you want

Configure Broker to use these modules

In ‘’/etc/shinken/brokers/broker-master.cfg” find the object Broker, and add the above modules to the modules line:

define broker{
broker_name broker-1
[...]
modules Simple-log,ToNdodb_Mysql,Service-Perfdata

}

Configure Scheduler to match Centreon’s Poller

Shinken’s “Scheduler” is called a “Poller” in Centreon. If you keep the sample Scheduler name, you won’t see any
data in the Centreon interface.

So edit ‘’/etc/shinken/schedulers/scheduler-master.cfg” and change the Scheduler name to match the Centreon’s Poller
name (“default”):

define scheduler{
scheduler_name default
[...]

}

11.9 Use Shinken with Graphite

11.9.1 Graphite

• Homepage: Graphite

• Screenshots:

• presentation: http://pivotallabs.com/talks/139-metrics-metrics-everywhere

• Description: “Graphite is an easy to use scalable time-series database and a web API that can provide raw data
for client rendering or server side rendering. It is the evolution of RRDtool.”

• License: GPL v2

11.9. Use Shinken with Graphite 329

http://graphite.readthedocs.org/en/0.9.10/index.html
http://pivotallabs.com/talks/139-metrics-metrics-everywhere

Shinken Documentation, Release 2.4

• Shinken dedicated forum: http://www.shinken-monitoring.org/forum/index.php/board,9.0.html

• Graphite dedicated forum: https://answers.launchpad.net/graphite

11.9.2 Install graphite

The best installation guide is actually this youtube walkthrough from Jason Dixon (Obfuscurity). There is a Chef
recipe for the above demonstration.

See http://graphite.readthedocs.org/en/latest/install.html documentation tells what to install but not how to configure
Apache and Django.

See Installing Graphite version 0.9.8 example. Just update for version 0.9.10 it is the exact same installation steps.
The vhost example also worked for me, while the wsgi examples did not for me.

Make sure you set the timezone properly in ‘’/opt/graphite/webapp/graphite/local_settings.py’‘, for instance:

TIME_ZONE = 'Europe/Paris'</code>

11.9.3 Using Shinken with Graphite

The Shinken Broker module graphite is in charge of exporting performance data from Shinken to the
Graphite databases.

Configure graphite module

define module{
module_name Graphite-Perfdata
module_type graphite_perfdata
host localhost
port 2003
templates_path /var/lib/shinken/share/templates/graphite/

}

Additional list of options for the Graphite export module and more in-depth documentation.

Enable it

Edit ‘’/etc/shinken/brokers/broker-master.cfg” and find the Broker object, and add the graphite module to its modules
line:

define broker{
broker_name broker-1

[...]
modules Livestatus,Simple-log,WebUI,Graphite-Perfdata

}

Use it

With Shinken UI

Still in ‘’/etc/shinken/modules/graphite.cfg’‘, find the GRAPHITE_UI object and configure the URL to your Graphite
install. If you used a graphite_data_source in the Graphite-Perfdata section, make sure to specify it here as well.

330 Chapter 11. Integration With Other Software

http://www.shinken-monitoring.org/forum/index.php/board,9.0.html
https://answers.launchpad.net/graphite
http://www.youtube.com/watch?v=0-g--_Be2jc&feature=player_embedded
https://github.com/manasg/chef-graphite
https://github.com/manasg/chef-graphite
http://graphite.readthedocs.org/en/latest/install.html
http://agiletesting.blogspot.ca/2011/04/installing-and-configuring-graphite.html

Shinken Documentation, Release 2.4

define module {
module_name GRAPHITE_UI
uri http://monitoring.mysite.com/graphite/
graphite_data_source shinken
...

}

Then find the WebUI object, and add GRAPHITE_UI to its modules (you’ll want to replace PNP_UI):

define module {
module_name WebUI
modules Apache_passwd, ActiveDir_UI, Cfg_password, GRAPHITE_UI, Mongodb
...

}

Restart Shinken to take the changes into account.

You have to possibility to use graphite template files. They are located in “templates_path”, (from the graphite_webui
module) They are file containing graphite urls with shinken contextual variables. Ex :

‘’${uri}render/?width=586&height=308&target=alias(legendValue(${host}.${service}.’user’%2C%22last%22)%2C%22User%22)&target=alias(legendValue(${host}.${service}.’sys’%2C%22last%22)%2C%22Sys%22)&target=alias(legendValue(${host}.${service}.’softirq’%2C%22last%22)%2C%22SoftIRQ%22)&target=alias(legendValue(${host}.${service}.’nice’%2C%22last%22)%2C%22Nice%22)&target=alias(legendValue(${host}.${service}.’irq’%2C%22last%22)%2C%22IRQ%22)&target=alias(legendValue(${host}.${service}.’iowait’%2C%22last%22)%2C%22I%2FO%20Wait%22)&target=alias(legendValue(${host}.${service}.’idle’%2C%22last%22)%2C%22Idle%22)&fgcolor=000000&bgcolor=FFFFFF)&areaMode=stacked&yMax=100’‘

is used for check_cpu. Split this string using & as a separator to understand it. It’s quite easy. Use graphite uri api doc.

Shinken uses the templates tht matches the check_command, like pnp does.

Important: The suggested configuration below is not final and has just been created, the documentation needs to be
updated for the correct usage of the .graph templates used in WebUI. There are a number of the already created, see
the existing packs to learn how to use them properly. Sorry for the inconvenience.

with Thruk

Thruk offers a proper integration with PNP, but not with Graphite. Still, you can use graphite with Thruk. Simply use
the action_url for your service/host to link toward the graphite url you want. Use HOSTNAME and SERVICEDESC
macros. The action_url icon will be a link to the graph in Thruk UI. For ex :

‘’ http://MYGRAPHITE/render/?lineMode=connected&width=586&height=308&_salt=1355923874.899&target=cactiStyle($HOSTNAME$.$SERVICEDESC$.*)&xFormat=%25H%3A%25M&tz=Europe/Paris&bgcolor=DDDDDD&fgcolor=111111&majorGridLineColor=black&minorGridLineColor=grey‘’

is what I use in my Thruk.

A change has been pushed in thruk’s github to grant Thruk the features it has for pnp to graphite. The rule above (use
action_url) still applies. Graphite will be displayed when the action_url contains the keyword “render”.

Important: The graphite template files feature is not used in Thruk. It is a “shinken UI only” feature.

Enjoy it

Restart shinken-arbiter and you are done.

/etc/init.d/shinken-arbiter restart</code>

11.9. Use Shinken with Graphite 331

http://MYGRAPHITE/render/?lineMode=connected&width=586&height=308&_salt=1355923874.899&target=cactiStyle(\protect \T1\textdollar HOSTNAME\protect \T1\textdollar .\protect \T1\textdollar SERVICEDESC\protect \T1\textdollar .*)&xFormat=%25H%3A%25M&tz=Europe/Paris&bgcolor=DDDDDD&fgcolor=111111&majorGridLineColor=black&minorGridLineColor=grey

Shinken Documentation, Release 2.4

11.10 Use Shinken with Multisite

11.10.1 Check_MK Multisite

• Homepage: http://mathias-kettner.de/check_mk.html

• Screenshots: http://mathias-kettner.de/check_mk_multisite_screenshots.html

• Description: “A new general purpose Nagios-plugin for retrieving data.”

• License: GPL v2

• Shinken dedicated forum: http://forum.shinken-monitoring.org/forums/17-Use-with-Multisite

11.10.2 Using Shinken with Multisite

Multisite communicates with Shinken through the LiveStatus module. If you used the sample configuration, everything
should be ready already. :)

You can review the configuration using the following steps.

Enable Livestatus module

See enable Livestatus module.

Configure Multisite

Latest versions of Multisite are included into Check_MK, which must be fully installed although we will only use the
web interface.

To install and configure Multisite manually, follow instructions at MK website.

332 Chapter 11. Integration With Other Software

http://mathias-kettner.de/check_mk.html
http://mathias-kettner.de/check_mk_multisite_screenshots.html
http://forum.shinken-monitoring.org/forums/17-Use-with-Multisite
http://mathias-kettner.de/checkmk_multisite_setup.html

Shinken Documentation, Release 2.4

Best choice is to use Shinken :ref:‘install script <gettingstarted/installations/shinken-
installation#method_1the_easy_way>‘ (In Shinken versions >1.0). With addons installation option (‘’./install
-a multisite’‘) it is fast and easy to install and configure it as Multisite’s default site.

Warning: If you get some error installing Multisite related with unknown paths (“can not find Multi-
site_versionXXX”) perhaps you must edit ‘’init.d/shinken.conf” file and adjust MKVER variable (search for “ex-
port MKVER”) with current stable available version of Check_MK as stated on MK website.

Check_MK install quick guide

• Install check_mk: Detailed instructions there. Shell driven install with a lot of questions related with Check_mk
install paths and integration with Apache and existing “Nagios”. For Shinken some default answers must be
changed to accommodate Shinken install.

• Edit config file ‘’multisite.mk’‘, usually in ‘’/etc/check_mk’‘, to insert a new site pointing to Shinken and
write Livestatus socket address as declared at Shinken’s Livestatus module. Socket may also be an unix socket
(“unix:/some/other/path”).

• Restart Apache.

‘’/etc/check_mk/multisite.mk’‘:

sites = {
"munich": {

"alias": "Munich"
},
"Shinken": {

"alias": "Shinken",
"socket": "tcp:127.0.0.1:50000",
"url_prefix": "http://shinken.fqdn/",

},
}

Note: Replace “shinken.fqdn” with the complete URI to reach Shinken host from browser (not 127.0.0.1!). Used by
PNP4Nagios’s mouse-over images.

If you plan to use Multisite only as web UI no more configuration is needed. Also you can disable WATO (Web
Administration TOol) by including the line wato_enabled = False in ‘’multisite.mk’‘.

11.10. Use Shinken with Multisite 333

http://mathias-kettner.de/checkmk_getting_started.html

Shinken Documentation, Release 2.4

11.11 Use Shinken with Nagvis

11.11.1 NagVis

• Homepage: http://www.nagvis.org/

• Screenshots: http://www.nagvis.org/screenshots

• Description: “NagVis is a visualization addon for the well known network management system Nagios.”

• License: GPL v2

• Shinken dedicated forum: http://www.shinken-monitoring.org/forum/index.php/board,11.0.html

11.11.2 Using Shinken with NagVis

NagVis communicates with Shinken through the LiveStatus module. If you used the sample configuration, everything
should be ready already. :)

You can review the configuration using the following steps.

Enable Livestatus module

The Livestatus API is server from the Shinken broker. It permits communications via TCP to efficiently retrieve
the current state and performance data of supervised hosts and services from Shinken. It also exposes configuration
information.

See enable Livestatus module.

334 Chapter 11. Integration With Other Software

http://www.nagvis.org/
http://www.nagvis.org/screenshots
http://www.shinken-monitoring.org/forum/index.php/board,11.0.html

Shinken Documentation, Release 2.4

Nagvis Installation

Download the software and follow the installation guide from http://www.nagvis.org/

NagVis configuration

Nagvis needs to know where the Shinken Livestatus API is hosted.

In NagVis configuration file ‘’/etc/nagvis/nagvis.ini.php’‘:

[backend_live_1]
backendtype="mklivestatus"
htmlcgi="/nagios/cgi-bin"
socket="tcp:localhost:50000"

Important: If you are using a non local broker (or a distributed Shinken architecture with multiple brokers) you
should change localhost to the IP/Servername/FQDN of your broker!

11.12 Use Shinken with Old CGI and VShell

11.12.1 For the Old CGI & VShell

The Old CGI and VShell uses the old flat file export. Shinken can export to this file, but beware: this method is very
very slooooow!

Warning: You should migrate to a Livestatus enabled web interface.

11.12.2 Declare the status_dat module

Export all status into a flat file in the old Nagios format. It’s for small/medium environment because it’s very slow to
parse. It can be used by the Nagios CGI. It also exports the objects.cache file for this interface.

Edit your /etc/shinken/modules/status-dat.cfg file:

define module{

module_name Status-Dat
module_type status_dat
status_file /var/lib/shinken/status.data
object_cache_file /var/lib/shinken/objects.cache
status_update_interval 15 ; update status.dat every 15s

}

11.12.3 Enable it

Edit your /etc/shinken/brokers/broker-master.cfg file and find the object Broker:

define broker{
broker_name broker-1

[...]

11.12. Use Shinken with Old CGI and VShell 335

http://www.nagvis.org/

Shinken Documentation, Release 2.4

modules Simple-log,Status-Dat
}

11.13 Use Shinken with PNP4Nagios

11.13.1 PNP4Nagios

• Homepage: http://docs.pnp4nagios.org/pnp-0.6/start

• Screenshots: http://docs.pnp4nagios.org/pnp-0.6/gallery/start

• Description: “PNP is an addon to Nagios which analyzes performance data provided by plugins and stores them
automatically into RRD-databases (Round Robin Databases, see RRD Tool).”

• License: GPL v2

• Shinken dedicated forum: http://www.shinken-monitoring.org/forum/index.php/board,9.0.html

11.13.2 Install PNP4Nagios

See PHP4Nagios installation documentation.

In a nutshell:

336 Chapter 11. Integration With Other Software

http://docs.pnp4nagios.org/pnp-0.6/start
http://docs.pnp4nagios.org/pnp-0.6/gallery/start
http://www.rrdtool.org/
http://www.shinken-monitoring.org/forum/index.php/board,9.0.html
http://docs.pnp4nagios.org/pnp-0.6/install

Shinken Documentation, Release 2.4

./configure --with-nagios-user=shinken --with-nagios-group=shinken
make all
make fullinstall

Don’t forget to make PNP4Nagios’ npcd daemon to start at boot, and launch it:

chkconfig --add npcd # On RedHat-like
update-rc.d npcd defaults # On Debian-like
/etc/init.d/npcd start

Configure npcdmod

The module npcdmod is in charge to export performance data from Shinken to PNP.

define module{
module_name NPCDMOD
module_type npcdmod
config_file <PATH_TO_NPCD.CFG>

}

Don’t forget to replace “<PATH_TO_NPCD.CFG>” with your own value; By default something like
‘’/usr/local/pnp4nagios/etc/npcd.cfg’‘.

11.13.3 Enable it

Edit ‘’/etc/shinken/brokers/broker-master.cfg” and find the object Broker to add above defined “NPCDMOD” to its
modules line:

define broker{
broker_name broker-1
[...]
modules Simple-log,NPCDMOD

}

Edit ‘’/etc/shinken/modules/webui.cfg” and find the object WebUI to add above defined “PNP_UI” to its modules
line:

define broker{
module_name WebUI
[...]
modules Apache_passwd,ActiveDir_UI,Cfg_password,PNP_UI

}

Then restart broker :

/etc/init.d/shinken-broker restart

11.13.4 Share users with Thruk

Edit /etc/httpd/conf.d/pnp4nagios.conf (RedHat path) and replace AuthName and AuthUserFile with:

AuthName "Thruk Monitoring"
AuthUserFile /etc/thruk/htpasswd

Then restart Apache:

11.13. Use Shinken with PNP4Nagios 337

Shinken Documentation, Release 2.4

service httpd restart

11.13.5 Set the action_url option

In order to get the graphs displayed in Thruk, you need to set the action_url option in host and service definitions, and
it must include the string “/pnp4nagios/” (Thruk doc).

If you want the link and the graph for all hosts and services, you could set the option directly in the default templates,
in ‘’templates.cfg’‘:

define host{
name generic-host
[...]
process_perf_data 1
[...]
#action_url http://<PNP4NAGIOS_HOST>/pnp4nagios/graph?host=$HOSTNAME$
If not an absolute URI, it must be relative to /cgi-bin/thruk/, not /thruk/!
action_url ../../pnp4nagios/graph?host=$HOSTNAME$
[...]

define service{
name generic-service
[...]
process_perf_data 1
[...]
#action_url http://<PNP4NAGIOS_HOST>/pnp4nagios/graph?host=$HOSTNAME$&srv=$SERVICEDESC$
If not an absolute URI, it must be relative to /cgi-bin/thruk/, not /thruk/!
action_url ../../pnp4nagios/graph?host=$HOSTNAME$&srv=$SERVICEDESC$

Don’t forget to replace “<PNP4NAGIOS_HOST>” with the server IP/name running PNP4Nagios (Don’t replace
$HOSTNAME$ and $SERVICEDESC$!)

Make sure to also have process_perf_data set to 1 for both hosts and services.

11.13.6 Link back to Thruk

Ask PNP4Nagios to link to ‘’/thruk/cgi-bin” rather than ‘’/nagios/cgi-bin’‘:

sed -i -e 's,/nagios/cgi-bin,/thruk/cgi-bin,' /opt/pnp4nagios/etc/config_local.php

11.13.7 Enjoy it

Restart shinken-arbiter and you are done.

/etc/init.d/shinken-arbiter restart

11.14 Use Shinken with WebUI

11.14.1 Shinken WebUI

Shinken includes a self sufficient Web User Interface, which includes its own web server (No need to setup Apache
or Microsoft IIS) Shinken WebUI is started at the same time Shinken itself does, and is configured using the main
Shinken configuration file by setting a few basic parameters.

338 Chapter 11. Integration With Other Software

http://www.thruk.org/documentation.html#_pnp4nagios_graphs

Shinken Documentation, Release 2.4

• Homepage: http://www.shinken-monitoring.org/

• Screenshots: http://www.shinken-monitoring.org/screenshots/

• Description: “Shinken WebUI is the default visualization interface. It’s designed to be simple and focus on root
problems analysis and business impacts.”

• License: AGPL v3

• Shinken forum: http://www.shinken-monitoring.org/forum/

11.14.2 Set up the WebUI module

Enable the webui module in ‘’modules/webui.cfg” configuration file that is on the server where your Arbiter is
installed.

define module{
module_name WebUI
module_type webui

host 0.0.0.0 ; mean all interfaces of your broker server
port 7767

CHANGE THIS VALUE or someone may forge your cookies
auth_secret TOCHANGE

Allow or not the html characters in plugins output
WARNING: so far, it can be a security issue
allow_html_output 0

Option welcome message
#login_text Welcome to ACME Shinken WebUI.

#http_backend auto
; can be also: wsgiref, cherrypy, paste, tornado, twisted

11.14. Use Shinken with WebUI 339

http://www.shinken-monitoring.org/
http://www.shinken-monitoring.org/screenshots/
http://www.shinken-monitoring.org/forum/

Shinken Documentation, Release 2.4

; or gevent. auto means best match in the system.
modules Apache_passwd,ActiveDir_UI,Cfg_password,Mongodb

Modules available for the WebUI:
#
Note: Choose one or more authentication methods.
#
Apache_passwd: use an Apache htpasswd files for auth
ActiveDir_UI: use AD for auth and photo collect
Cfg_password: use passwords in contacts configuration for authentication
#
PNP_UI: Use PNP graphs in the UI
GRAPHITE_UI: Use graphs from Graphite
#
Mongodb: Necessary for enabling user preferences in WebUI

}

Important: Have you changed the auth_secret parameter already? No? Do it now!

Important: Also add the webui to the modules in the broker config in brokers/broker-master.cfg.

Note: The web-server handling HTTP Request to the WebUI is a Python process. You do not need any web-server
(like Apache) to run the WebUI.

11.14.3 Authentification modules

The WebUI use modules to lookup your user password and allow to authenticate or not.

By default it is using the cfg_password_webui module, which will look into your contact definition for the password
parameter.

Tip: You need to declare these modules in the modules property of WebUI.

Shinken contact - cfg_password_webui

The simpliest is to use the users added as Shinken contacts.

define module{
module_name Cfg_password
module_type cfg_password_webui

}

Apache htpasswd - passwd_webui

This module uses an Apache passwd file (htpasswd) as authentification backend. All it needs is the full path of the file
(from a legacy Nagios CGI installation, for example).

define module{
module_name Apache_passwd
module_type passwd_webui

340 Chapter 11. Integration With Other Software

Shinken Documentation, Release 2.4

WARNING: put the full PATH for this value!
passwd /etc/shinken/htpasswd.users

}

Check the owner (must be Shinken user) and mode (must be readable) of this file.

If you don’t have such a file you can generate one with the “htpasswd” command (in Debian’s “apache2-utils” pack-
age), or from websites like htaccessTools.

Important: To be able to log into the WebUI, users also have to be Shinken contacts! So adding an user in this file
without adding it in the contacts will have no effect.

Active Directory / OpenLDAP - ad_webui

This module allows to lookup passwords into both Active Directory or OpenLDAP entries.

define module {
module_name ActiveDir_UI
module_type ad_webui
ldap_uri ldaps://adserver
username user
password password
basedn DC=google,DC=com

For mode you can switch between ad (active dir)
and openldap
mode ad

}

Change “adserver” by your own dc server, and set the “user/password” to an account with read access on the basedn
for searching the user entries.

Change “mode” from “ad” to “openldap” to make the module ready to authenticate against an OpenLDAP directory
service.

You could also find module sample in the modules directory.

User photos

In the WebUI users can see each others photos.

At this point only the “ad_webui” module allows to import and display photos in the WebUI. There is no configuration:
if you add the “ad_webui” module it will import contact photos automatically.

11.14.4 User preferences modules

The WebUI use mongodb to store all user preferences, dashboards and other information.

To enable user preferences do the following:

• install mongodb

• add “Mongodb” to your WebUI module list as done in the example at the top of this page

11.14. Use Shinken with WebUI 341

http://www.htaccesstools.com/htpasswd-generator/

Shinken Documentation, Release 2.4

11.14.5 Metrology graph modules

You can link the WebUI so it will present graphs from other tools, like PNP4Nagios or Graphite. All you need is to
declare such modules (there are already samples in the default configuration) and add them in the WebUI modules
definition.

PNP graphs

You can ask for a PNP integration with a pnp_webui module. Here is its definition:

Use PNP graphs in the WebUI
define module{

module_name PNP_UI
module_type pnp_webui
uri http://YOURSERVERNAME/pnp4nagios/ ; put the real PNP uri here. YOURSERVERNAME must be changed

; to the hostname of the PNP server
}

Shinken will automatically replace YOURSERVERNAME with the broker hostname at runtime to try and make it
work for you, but you MUST change it to the appropriate value.

Graphite graphs

You can ask for Graphite graphs with the graphite_ui definition.

define module{
module_name GRAPHITE_UI
module_type graphite_webui
uri http://YOURSERVERNAME/ ; put the real GRAPHITE uri here. YOURSERVERNAME must be changed

; to the hostname of the GRAPHITE server
}

Shinken will automatically replace YOURSERVERNAME with the broker hostname at runtime to try and make it
work for you, but you MUST change it to the appropriate value.

11.14.6 Use it!

The next step is very easy: just access the WebUI URI (something like %%http://127.0.0.1:7767/%%) on log in with
the user/password set during the previous part! The default username and password is admin/admin

342 Chapter 11. Integration With Other Software

CHAPTER 12

Security and Performance Tuning

343

Shinken Documentation, Release 2.4

12.1 Security Considerations

12.1.1 Introduction

This is intended to be a brief overview of some things you should keep in mind when installing Shinken, so as set it
up in a secure manner.

Your monitoring box should be viewed as a backdoor into your other systems. In many cases, the Shinken server might
be allowed access through firewalls in order to monitor remote servers. In most all cases, it is allowed to query those
remote servers for various information. Monitoring servers are always given a certain level of trust in order to query
remote systems. This presents a potential attacker with an attractive backdoor to your systems. An attacker might have
an easier time getting into your other systems if they compromise the monitoring server first. This is particularly true
if you are making use of shared “SSH” keys in order to monitor remote systems.

If an intruder has the ability to submit check results or external commands to the Shinken daemon, they have the
potential to submit bogus monitoring data, drive you nuts you with bogus notifications, or cause event handler scripts
to be triggered. If you have event handler scripts that restart services, cycle power, etc. this could be particularly
problematic.

Another area of concern is the ability for intruders to sniff monitoring data (status information) as it comes across
the wire. If communication channels are not encrypted, attackers can gain valuable information by watching your
monitoring information. Take as an example the following situation: An attacker captures monitoring data on the wire
over a period of time and analyzes the typical CPU and disk load usage of your systems, along with the number of
users that are typically logged into them. The attacker is then able to determine the best time to compromise a system
and use its resources (CPU, etc.) without being noticed.

Here are some tips to help ensure that you keep your systems secure when implementing a Shinken-based monitoring
solution...

12.1.2 Best Practices

Use a Dedicated Monitoring Box I would recommend that you install Shinken on a server that is dedicated to mon-
itoring (and possibly other admin tasks). Protect your monitoring server as if it were one of the most important
servers on your network. Keep running services to a minimum and lock down access to it via TCP wrappers,
firewalls, etc. Since the Shinken server is allowed to talk to your servers and may be able to poke through your
firewalls, allowing users access to your monitoring server can be a security risk. Remember, its always easier to
gain root access through a system security hole if you have a local account on a box.

344 Chapter 12. Security and Performance Tuning

Shinken Documentation, Release 2.4

Don’t Run Shinken As Root Shinken doesn’t need to run as root, so don’t do it. You can tell Shinken to drop
privileges after startup and run as another user/group by using the Shinken_user and Shinken_group directives
in the main config file. If you need to execute event handlers or plugins which require root access, you might
want to try using sudo.

Lock Down The Check Result Directory Make sure that only the Shinken user is able to read/write in the check re-
sult path. If users other than Shinken (or root) are able to write to this directory, they could send fake host/service
check results to the Shinken daemon. This could result in annoyances (bogus notifications) or security problems
(event handlers being kicked off).

Lock Down The External Command File If you enable External Commands external commands, make sure you
set proper permissions on the “/usr/local/Shinken/var/rw directory”. You only want the Shinken user (usually
Shinken) and the web server user (usually nobody, httpd, apache2, or www-data) to have permissions to write to
the command file. If you’ve installed Shinken on a machine that is dedicated to monitoring and admin tasks and
is not used for public accounts, that should be fine. If you’ve installed it on a public or multi-user machine (not
recommended), allowing the web server user to have write access to the command file can be a security problem.
After all, you don’t want just any user on your system controlling Shinken through the external command file.
In this case, I would suggest only granting write access on the command file to the Shinken user and using
something like CGIWrap to run the CGIs as the Shinken user instead of nobody.

Use Full Paths In Command Definitions When you define commands, make sure you specify the full path (not a
relative one) to any scripts or binaries you’re executing.

Hide Sensitive Information With “$USERn$” Macros The CGIs read the Main Configuration File Options main
config file and Object Configuration Overview Object config file(s), so you don’t want to keep any sensitive
information (usernames, passwords, etc) in there. If you need to specify a username and/or password in a com-
mand definition use a “$USERn$” Understanding Macros and How They Work macro to hide it. “$USERn$”

12.1. Security Considerations 345

http://www.courtesan.com/sudo/sudo
http://cgiwrap.sourceforge.net/

Shinken Documentation, Release 2.4

macros are defined in one or more resource files. The CGIs will not attempt to read the contents of resource
files, so you can set more restrictive permissions (600 or 660) on them. See the sample “resource.cfg” file in the
base of the Shinken distribution for an example of how to define $USERn$ macros.

Strip Dangerous Characters From Macros Use the illegal_macro_output_chars directive to strip dangerous char-
acters from the “$HOSTOUTPUT$”, “$SERVICEOUTPUT$”, “$HOSTPERFDATA$”, and “$SERVI-
CEPERFDATA$” macros before they’re used in notifications, etc. Dangerous characters can be anything that
might be interpreted by the shell, thereby opening a security hole. An example of this is the presence of backtick
(‘) characters in the “$HOSTOUTPUT$”, “$SERVICEOUTPUT$”, “$HOSTPERFDATA$”, and/or “$SERVI-
CEPERFDATA$” macros, which could allow an attacker to execute an arbitrary command as the Shinken user
(one good reason not to run Shinken as the root user).

Secure Access to Remote Agents Make sure you lock down access to agents (NRPE, NSClient, “SNMP”, etc.) on
remote systems using firewalls, access lists, etc. You don’t want everyone to be able to query your systems for
status information. This information could be used by an attacker to execute remote event handler scripts or to
determine the best times to go unnoticed.

Secure Communication Channels Make sure you encrypt communication channels between different Shinken in-
stallations and between your Shinken servers and your monitoring agents whenever possible. You don’t want
someone to be able to sniff status information going across your network. This information could be used by an
attacker to determine the best times to go unnoticed.

346 Chapter 12. Security and Performance Tuning

Shinken Documentation, Release 2.4

12.2 Tuning Shinken For Maximum Performance

12.2.1 Introduction

So you’ve finally got Shinken up and running and you want to know how you can tweak it a bit. Tuning Shinken to
increase performance can be necessary when you start monitoring a large number (> 10,000) of hosts and services.
Here are the common optimization paths.

12.2.2 Designing your installation for scalability

Planning a large scale Shinken deployments starts before installing Shinken and monitoring agents.

Scaling Shinken for large deployments

12.2.3 Optimization Tips:

Graph your shinken server performance In order to keep track of how well your installation handles load over time
and how your configuration changes affect it, you should be graphing several important statistics. This is really,
really, really useful when it comes to tuning the performance of an installation. Really. Information on how to
do this can be found Graphing Performance Info With MRTG here.

Check service latencies to determine best value for maximum concurrent checks Nagios can restrict the number
of maximum concurrently executing service checks to the value you specify with the max_concurrent_checks
option. This is good because it gives you some control over how much load Nagios will impose on your
monitoring host, but it can also slow things down. If you are seeing high latency values (> 10 or 15 seconds) for
the majority of your service checks. That’s not Shinken’s fault _ its yours. Under ideal conditions, all service
checks would have a latency of 0, meaning they were executed at the exact time that they were scheduled to
be executed. However, it is normal for some checks to have small latency values. I would recommend taking
the minimum number of maximum concurrent checks reported when running Shinken with the _s command
line argument and doubling it. Keep increasing it until the average check latency for your services is fairly low.
More information on service check scheduling can be found Service and Host Check Scheduling here.

Use passive checks when possible The overhead needed to process the results of passive checks is much lower than
that of “normal” active checks, so make use of that piece of info if you’re monitoring a slew of services. It
should be noted that passive service checks are only really useful if you have some external application doing
some type of monitoring or reporting, so if you’re having Nagios do all the work, this won’t help things.

Avoid using interpreted plugins One thing that will significantly reduce the load on your monitoring host is the use
of compiled (C/C++, etc.) plugins rather than interpreted script (Perl, etc) plugins. While Perl scripts and
such are easy to write and work well, the fact that they are compiled/interpreted at every execution instance
can significantly increase the load on your monitoring host if you have a lot of service checks. If you want to
use Perl plugins, consider compiling them into true executables using perlcc(1) (a utility which is part of the
standard Perl distribution).

Optimize host check commands If you’re checking host states using the check_ping plugin you’ll find that host
checks will be performed much faster if you break up the checks. Instead of specifying a max_attempts value
of 1 in the host definition and having the check_ping plugin send 10 “ICMP” packets to the host, it would be
much faster to set the max_attempts value to 10 and only send out 1 “ICMP” packet each time. This is due to
the fact that Nagios can often determine the status of a host after executing the plugin once, so you want to make
the first check as fast as possible. This method does have its pitfalls in some situations (i.e. hosts that are slow
to respond may be assumed to be down), but you’ll see faster host checks if you use it. Another option would
be to use a faster plugin (i.e. check_fping) as the host_check_command instead of check_ping.

12.2. Tuning Shinken For Maximum Performance 347

Shinken Documentation, Release 2.4

Don’t use aggressive host checking Unless you’re having problems with Shinken recognizing host recoveries, I
would recommend not enabling the use_aggressive_host_checking option. With this option turned off host
checks will execute much faster, resulting in speedier processing of service check results. However, host recov-
eries can be missed under certain circumstances when this it turned off. For example, if a host recovers and all
of the services associated with that host stay in non-OK states (and don’t “wobble” between different non-OK
states), Shinken may miss the fact that the host has recovered. A few people may need to enable this option, but
the majority don’t and I would recommendnot using it unless you find it necessary.

Optimize hardware for maximum performance Hardware performance shouldn’t be an issue unless:

• you’re monitoring thousands of services

• you are writing to a metric database such as RRDtool or Graphite. Disk access will be a very important
factor.

• you’re doing a lot of post-processing of performance data, etc. Your system configuration and your hard-
ware setup are going to directly affect how your operating system performs, so they’ll affect how Shinken
performs. The most common hardware optimization you can make is with your hard drives, RAID, do not
update attributes for access-time/write-time.

Shinken needs quite a bit of memory which is pre-allocated by the Python processes.

Move your Graphite metric databases to dedicated servers Use multiple carbon-relay and carbon-cache daemons
to split the load on a single server.

12.3 Scaling a Shinken installation

12.3.1 Introduction

Shinken is designed to scale horizontally, but carefully planning your deployment will improve chances of success.

12.3.2 Scalability guide

Learn how to prepare by reading the main scalability guide for large Shinken installations

12.4 Shinken performance statistics

12.4.1 Introduction

Shinken provides some statistics in the log files on the health of the Shinken services. These are not currently available
in the check_shinken check script. Support is planned in a future release. This will permit graphical review that
Shinken :

• Operates efficiently

• Locate problem areas in the monitoring process

• Observe the performance impacts of changes in your Shinken configuration

Shinken internal metrics are collected in the poller log and scheduler logs when debug log level is enabled.

348 Chapter 12. Security and Performance Tuning

Shinken Documentation, Release 2.4

12.5 Graphing Performance Info With MRTG and nagiostats

Some basic info can be found on http://nagios.sourceforge.net/docs/3_0/mrtggraphs.html

12.5. Graphing Performance Info With MRTG and nagiostats 349

http://nagios.sourceforge.net/docs/3_0/mrtggraphs.html

Shinken Documentation, Release 2.4

350 Chapter 12. Security and Performance Tuning

CHAPTER 13

How to monitor ...

351

Shinken Documentation, Release 2.4

13.1 Monitoring Active Directory

Abstract

This document describes how you can monitor domain controller. This monitoring covers typically:

• Domain replication

• etc...

13.1.1 Introduction

These instructions assume that you’ve installed Shinken according to the Installation tutorial. The sample configura-
tion entries below reference objects that are defined in the sample config files (“commands.cfg”, “templates.cfg”, etc.)
that was installed if you followed the quickstart.

13.1.2 Overview

Monitoring a domain controller is possible in an agentless way by polling via the network using the WMI protocol,
like we proposed in the windows template.

13.1.3 Prerequisites

Have a valid account on the Microsoft Windows device (local or domain account) you will monitor using WMI queries
and already get the windows server monitor with the windows template.

13.1.4 Steps

There are several steps you’ll need to follow in order to monitor a Microsoft Exchange server.

• Add the good domain controller template to your windows host in the configuration

• Restart the Shinken Arbiter

13.1.5 What’s Already Been Done For You

To make your life a bit easier, configuration templates are provided as a starting point:

• A selection of check_ad_replication based commands definitions have been added to the “commands.cfg” file.
This allows you to use the check_wmi_plus plugin.

• Some Exchange host templates are included the “templates.cfg” file. This allows you to add new host definitions
in a simple manner.

The above-mentioned config files can be found in the ///etc/shinken/packs/microsoft/dc// directory. You can modify
the definitions in these and other templates to suit your needs. However, wait until you’re more familiar with Shinken
before doing so. For the time being, just follow the directions outlined below and you’ll be monitoring your devices
in no time.

352 Chapter 13. How to monitor ...

Shinken Documentation, Release 2.4

13.1.6 Setup the check_wmi_plus plugin

If you already follow the windows monitoring tutorial, you should already got the check_wmi_plus plugin. If it’s not
done, please do it first.

13.1.7 Declare your host in Shinken

The domain controller template name is dc. All you need is to add it on your windws host.

Now it’s time to define some object definitions in your Shinken configuration files in order to monitor the new Windows
machine.

We will suppose here that your server is named srv-win-1. Of course change this name with the real name of your
server.

Find your host definition and edit it:

Under Linux:

linux:~ # vi /etc/shinken/hosts/srv-win-1.cfg

Or Windows:

c:\ wordpad c:\shinken\etc\hosts\srv-win-1.cfg

All you need it to add the good template for your host. For example for a Hub Transport server:

define host{
use dc,windows
host_name srv-win-1
address srv-win-1.mydomain.com

}

* The use dc is the "template" line. It mean that this host will **inherits** properties from this template.

* the host_name is the object name of your host. It must be **unique**.

* the address is ... the network address of your host :)

What is checked with a domain controller template?

At this point, you configure your host to be checked with a dc and windows templates. What does it means? In addition
to the windows classic checks, it means that you got some checks already configured for you:

• Domain replication

13.1.8 Restarting Shinken

You’re done with modifying the Shinken configuration, so you’ll need to verify your configuration files and restart
Shinken.

If the verification process produces any errors messages, fix your configuration file before continuing. Make sure that
you don’t (re)start Shinken until the verification process completes without any errors!

13.1. Monitoring Active Directory 353

Shinken Documentation, Release 2.4

13.2 Monitoring Asterisk servers

Abstract

This document describes how you can monitor an Asterisk server. This monitoring covers typically:

• overall state

13.2.1 Introduction

These instructions assume that you’ve installed Shinken according to the Installation tutorial. The sample configura-
tion entries below reference objects that are defined in the sample config files (“commands.cfg”, “templates.cfg”, etc.)
that was installed if you followed the quickstart.

13.2.2 Overview

Monitoring an asterisk server is possible with the check_sip plugin and an account on the Asterisk server.

13.2.3 Prerequisites

Have a valid account on the Asterisk device.

13.2.4 Steps

There are several steps you’ll need to follow:

• Setup the check_sip plugin

• Add the good asterisk template to your host in the configuration

• Restart the Shinken Arbiter

13.2.5 What’s Already Been Done For You

To make your life a bit easier, configuration templates are provided as a starting point:

• A selection of check_sip based commands definitions have been added to the “commands.cfg” file.

• An Asterisk host template is included the “templates.cfg” file. This allows you to add new host definitions in a
simple manner.

The above-mentioned config files can be found in the ///etc/shinken/packs/network/services/asterisk// directory. You
can modify the definitions in these and other templates to suit your needs. However, wait until you’re more familiar
with Shinken before doing so. For the time being, just follow the directions outlined below and you’ll be monitoring
your devices in no time.

13.2.6 Setup the check_sip plugin

As the shinken account in your shinken server run:

354 Chapter 13. How to monitor ...

Shinken Documentation, Release 2.4

wget "http://www.bashton.com/downloads/nagios-check_sip-1.3.tar.gz"
tar xvfz nagios-check_sip-1.3.tar.gz
cd nagios-check_sip-1.3/
cp check_sip /var/lib/shinken/libexec
chmod a+x /var/lib/nagios/plugins/check_sip

13.2.7 Add the SIP user credentials

In the file /etc/shinken/packs/network/services/asterisk/macros you can edit the SIPUSER that you want ot use for the
connection.

13.2.8 Declare your host in Shinken

The Asterisk template name is asterisk. All you need is to add it on yourhost.

Now it’s time to define some object definitions in your Shinken configuration files in order to monitor the new Windows
machine.

We will suppose here that your server is named srv-sip-1. Of course change this name with the real name of your
server.

Find your host definition and edit it:

Under Linux:

linux:~ # vi /etc/shinken/hosts/srv-sip-1.cfg

Or Windows:

c:\ wordpad c:\shinken\etc\hosts\srv-sip-1.cfg

All you need it to add the asterisk template for your host.

define host{
use asterisk,windows
host_name srv-sip-1
address srv-sip-1.mydomain.com

}

* The use sip is the "template" line. It mean that this host will **inherits** properties from this template.

* the host_name is the object name of your host. It must be **unique**.

* the address is ... the network address of your host :)

What is checked with an askterisk template?

At this point, you configure your host to be checked with an asterisk templates. What does it means? It means that
you got some checks already configured for you:

• overall state of the asterisk server

13.2.9 Restarting Shinken

You’re done with modifying the Shinken configuration, so you’ll need to verify your configuration files and restart
Shinken.

13.2. Monitoring Asterisk servers 355

Shinken Documentation, Release 2.4

If the verification process produces any errors messages, fix your configuration file before continuing. Make sure that
you don’t (re)start Shinken until the verification process completes without any errors!

13.3 Monitoring DHCP servers

Abstract

This document describes how you can monitor a DHCP service.

13.3.1 Introduction

These instructions assume that you’ve installed Shinken according to the Installation tutorial. The sample configura-
tion entries below reference objects that are defined in the sample config files (“commands.cfg”, “templates.cfg”, etc.)
that are installed if you follow the quickstart.

13.3.2 Overview

Note: TODO: draw a dhcp diag

Monitoring a DHCP server means ask for a DHCP query and wait for a response from this server. Don’t worry, the
DHCP confirmation will never be send, so you won’t have a DHCP entry for this test.

13.3.3 Steps

There are some steps you’ll need to follow in order to monitor a new database machine. They are:

• Allow check_dhcp to run

• Update your server host definition for dhcp monitoring

• Restart the Shinken daemon

13.3.4 What’s Already Done For You

To make your life a bit easier, a few configuration tasks have already been done for you:

• Some check_dhcp commands definition has been added to the “commands.cfg” file.

• An DHCP host template (called “dhcp”) has already been created in the “templates.cfg” file.

The above-mentioned config files can be found in the //etc/shinken/packs/network/services/dhcp directory (or
c:\shinken\etc\packs\network\services\dhcp under windows). You can modify the definitions in these and other def-
initions to suit your needs better if you’d like. However, I’d recommend waiting until you’re more familiar with
configuring Shinken before doing so. For the time being, just follow the directions outlined below and you’ll be
monitoring your DHCP boxes in no time.

Tip: We are supposing here that the DHCP server you want to monitor is named srv-lin-1 and is a linux. Please
change the above lines and commands with the real name of your server of course.

356 Chapter 13. How to monitor ...

Shinken Documentation, Release 2.4

13.3.5 Allow check_dhcp to run

The check_dhcp must be run under the root account to send a dhcp call on the network. To do this, you should launch
on your shinken server:

chown root:root /usr/lib/nagios/plugins/check_dhcp
chmod u+s /usr/lib/nagios/plugins/check_dhcp

13.3.6 Declare your host as an dhcp server

All you need to get all the DHCP service checks is to add the dhcp template to this host. We suppose you already
monitor the OS for this host, and so you already got the host configuration file for it.

Under Linux:

linux:~ # vi /etc/shinken/hosts/srv-lin-1.cfg

Or Windows:

c:\ wordpad c:\shinken\etc\hosts\srv-lin-1.cfg

And add:

define host{
use dhcp,linux
host_name srv-lin-1
address srv-lin-1.mydomain.com

}

13.3.7 Restarting Shinken

You’re done with modifying the Shiknen configuration, so you’ll need to verify your configuration files and restart
Shinken.

If the verification process produces any errors messages, fix your configuration file before continuing. Make sure that
you don’t (re)start Shinken until the verification process completes without any errors!

13.4 Monitoring IIS servers

Abstract

This document describes how you can monitor a IIS server. This monitoring covers typically:

• connections count

• number of errors

• number of logged users

• etc...

13.4. Monitoring IIS servers 357

Shinken Documentation, Release 2.4

13.4.1 Introduction

These instructions assume that you’ve installed Shinken according to the Installation tutorial. The sample configura-
tion entries below reference objects that are defined in the sample config files (“commands.cfg”, “templates.cfg”, etc.)
that was installed if you followed the quickstart.

13.4.2 Overview

Monitoring a domain controller is possible in an agentless way by polling via the network using the WMI protocol,
like we proposed in the windows template.

13.4.3 Prerequisites

Have a valid account on the Microsoft Windows device (local or domain account) you will monitor using WMI queries
and already get the windows server monitor with the windows template.

13.4.4 Steps

There are several steps you’ll need to follow in order to monitor a Microsoft IIS server.

• Add the good iis template to your windows host in the configuration

• Restart the Shinken Arbiter

13.4.5 What’s Already Been Done For You

To make your life a bit easier, configuration templates are provided as a starting point:

• A selection of check_iis_** based commands definitions have been added to the “commands.cfg” file. This
allows you to use the check_wmi_plus plugin.

• A IIS host template is included the “templates.cfg” file. This allows you to add new host definitions in a simple
manner.

The above-mentioned config files can be found in the ///etc/shinken/packs/microsoft/iis// directory. You can modify
the definitions in these and other templates to suit your needs. However, wait until you’re more familiar with Shinken
before doing so. For the time being, just follow the directions outlined below and you’ll be monitoring your devices
in no time.

13.4.6 Setup the check_wmi_plus plugin

If you already follow the windows monitoring tutorial, you should already got the check_wmi_plus plugin. If it’s not
done, please do it first.

13.4.7 Declare your host in Shinken

The IIS template name is iis. All you need is to add it on your windws host.

Now it’s time to define some object definitions in your Shinken configuration files in order to monitor the new Windows
machine.

358 Chapter 13. How to monitor ...

Shinken Documentation, Release 2.4

We will suppose here that your server is named srv-win-1. Of course change this name with the real name of your
server.

Find your host definition and edit it:

Under Linux:

linux:~ # vi /etc/shinken/hosts/srv-win-1.cfg

Or Windows:

c:\ wordpad c:\shinken\etc\hosts\srv-win-1.cfg

All you need it to add the good template for your host. For example for a Hub Transport server:

define host {
use iis,windows
host_name srv-win-1
address srv-win-1.mydomain.com
}

* The use iis is the "template" line. It mean that this host will **inherits** properties from this template.

* the host_name is the object name of your host. It must be **unique**.

* the address is ... the network address of your host :)

What is checked with a IIS template?

At this point, you configure your host to be checked with a IIS and Windows templates. What does it means? In
addition to the windows classic checks, it means that you got some checks already configured for you:

• connections count

• number of errors

• number of logged users

• etc ...

13.4.8 Restarting Shinken

You’re done with modifying the Shinken configuration, so you’ll need to verify your configuration files and restart
Shinken.

If the verification process produces any errors messages, fix your configuration file before continuing. Make sure that
you don’t (re)start Shinken until the verification process completes without any errors!

13.5 Monitoring Linux devices

Abstract

This document describes how you can monitor “private” services and attributes of Linux devices, such as:

• Memory usage

• CPU load

• Disk usage

13.5. Monitoring Linux devices 359

Shinken Documentation, Release 2.4

• Running processes

• etc.

13.5.1 Introduction

Publicly available services that are provided by Linux devices (like “HTTP”, “FTP”, “POP3”, etc.) can be monitored
easily by following the documentation on Monitoring publicly available services (HTTP, FTP, SSH, etc.).

These instructions assume that you’ve installed Shinken according to the Installation tutorial. The sample configura-
tion entries below reference objects that are defined in the sample config files (“commands.cfg”, “templates.cfg”, etc.)
that are installed if you followed the quickstart.

13.5.2 Overview

Note: TODO: draw a by snmp diag

You can monitor a Linux device with an snmp agent, with a local agent and via SSH.

• This tutorial will focus on the SNMP based method.

• A local agent can provide faster query interval, more flexibility, passive and active communication methods.

• SSH based communications and checks should only be executed for infrequent checks as these have a high
impact on the client and server cpu. These also are very slow to execute overall and will not scale when polling
thousands of devices.

13.5.3 Steps

Here are the steps you will need to follow in order to monitor a new Linux device:

• Install/configure SNMPd on the Linux device

• Create new host definition for monitoring this device

• Restart the Shinken daemon

13.5.4 What’s Already Been Done For You

To make your life a bit easier, a few configuration tasks have already been done for you:

• A selection of check_snmp_ command definitions has been added to the “commands.cfg” file.

• A Linux host template (called “linux”) has already been created in the “templates.cfg” file. This allows you to
add new host definitions with a simple keyword.

The above-mentioned configuration files can be found in the ///etc/shinken///packs/os/linux directory (or
c:shinkenetcpacksoslinux under windows). You can modify the definitions in these and other configuration packs
to suit your needs better. However, it is recommended to wait until you’re more familiar with Shinken before doing
so. For the time being, just follow the directions outlined below and you’ll be securely monitoring your Linux boxes
in no time.

Tip: In the example, the linux device being monitored is named srv-lin-1. To re-use the example, make sure to update
the hostname to that of your server.

360 Chapter 13. How to monitor ...

Shinken Documentation, Release 2.4

13.5.5 Installing/setup snmpd on srv-lin-1

First connect as root under srv-lin-1 with SSH (or putty/SecureCRT under windows).

Note: Todo: check if shinken.sh can do this, or with a deploy command?

RedHat like:

yum install snmpd

Debian like:

apt-get install snmpd

Edit the /etc/snmp/snmpd.conf and comment the line:

agentAddress udp:127.0.0.1:161

and uncomment the line:

agentAddress udp:161,udp6:[::1]:161

You can change the SNMP community (password) for your host in the line by changing the default value “public” by
what you prefer:

rocommunity public

Restart the snmpd daemon:

sudo /etc/init.d/snmpd restart

Test the connection

To see if the keys are working, just launch from your Shinken server. Change the “public” community value with your
one:

check_snmp -H srv-lin-1 -o .1.3.6.1.2.1.1.3.0 -C public

It should give you the uptime of the srv-lin-1 server.

13.5.6 Declare your new host in Shinken

If the SNMP community value is a global one you are using on all your hosts, you can configure it in the file
/etc/shinken/resource.cfg (or c:shinkenresource.cfg under windows) in the line:

$SNMPCOMMUNITYREAD$=public

Now it’s time to define some object definitions in your Shinken configuration files in order to monitor the new Linux
device.

You can add the new host definition in an existing configuration file, but it’s a good idea to have one file per host, it
will be easier to manage in the future. So create a file with the name of your server.

Under Linux:

linux:~ # vi /etc/shinken/hosts/srv-lin-1.cfg

Or Windows:

13.5. Monitoring Linux devices 361

Shinken Documentation, Release 2.4

c:\ wordpad c:\shinken\etc\hosts\srv-lin-1.cfg

You need to add a new host definition for the Linux device that you’re going to monitor. Just copy/paste the above
definition Change the “host_name”, and “address” fields to appropriate values for this device.

define host{
use linux
host_name srv-lin-1
address srv-lin-1.mydomain.com

}

* the "use linux" is the "template" line. It mean that this host will **inherits** properties from the linux template.

* the host_name is the object name of your host. It must be **unique**.

* the address is ... the network address of your linux server :)

If you are using a specific SNMP community for this host, you can configure it in the SNMPCOMUNITY host macro
like this:

define host{
use linux
host_name srv-lin-1
address srv-lin-1.mydomain.com
_SNMPCOMMUNITY password

}

To enable disk checking for the host, configure the filesystem macro:

define host{
use linux
host_name srv-lin-1
address srv-lin-1.mydomain.com
_SNMPCOMMUNITY password
_fs /, /var

}

What is checked with a linux template?

At this point, you configure your host to be checked with a linux template. What does it means? It means that you got
some checks already configured for you:

• host check each 5 minutes: check with a ping that the server is UP

• check disk spaces

• check load average

• check the CPU usage

• check physical memory and swap usage

• check network interface activities

13.5.7 Restarting Shinken

You’re done with modifying the Shiknen configuration, so you’ll need to verify your configuration files and restart
Shinken.

362 Chapter 13. How to monitor ...

Shinken Documentation, Release 2.4

If the verification process produces any errors messages, fix your configuration file before continuing. Make sure that
you don’t (re)start Shinken until the verification process completes without any errors!

13.6 Monitoring Linux devices

This document describes how you can monitor “private” services and attributes of GNU/Linux devices, such as:

• Memory usage

• CPU load

• Disk usage

• Running processes

• etc.

13.6.1 Available Methods

Several methods to monitor GNU/Linux devices are available:

• SNMP – Install or activate the linux SNMP agent and configure it to serve system statistics;

• Local Agent – Provides faster query interval, more flexibility, passive and active communication methods;

• SSH – Should only be executed for infrequent checks as these have a high impact on the client and server CPU.
It’s also very slow to execute overall, and will not scale when polling thousands of devices;

• Monitoring Publicly Available Services – Public services provided by GNU/Linux devices (like HTTP, FTP,
POP3, etc.) can be easily monitored.

13.7 Monitoring Linux devices via a Local Agent

Note: TODO Documentation needs to be written

See:

• Chapter 9. Monitoring GNU/Linux & Unix Machines

13.7.1 NRPE

See:

13.6. Monitoring Linux devices 363

Shinken Documentation, Release 2.4

• Shinken Module to bypass check_nrpe tool: NRPE Module

13.7.2 NSCA

See:

• Shinken Module to natively receive NSCA messages : :ref:‘ <nsca_daemon_module>‘

13.8 Monitoring Linux devices via SNMP

Note: TODO: draw a by snmp diag

Instructions below assume that you’ve installed Shinken according to the 10 Minutes Installation Guide. The sample
configuration entries below reference objects that are defined in the sample config files (‘’commands.cfg’‘, ‘’tem-
plates.cfg’‘, etc.) installed if you followed this quickstart.

13.8.1 Steps

Here are the steps you will need to follow in order to monitor a new GNU/Linux device:

• Install/configure SNMPd on the GNU/Linux device

• Create new host definition for monitoring this device

• Restart the Shinken daemon

13.8.2 What’s Already Been Done For You

To make your life a bit easier, a few configuration tasks have already been done for you:

• A selection of check_snmp_ command definitions has been added to the “commands.cfg” file.

• A Linux host template (called “linux”) has already been created in the “templates.cfg” file. This allows you to
add new host definitions with a simple keyword.

The above-mentioned configuration files can be found in the ///etc/shinken///packs/os/linux directory (or
c:shinkenetcpacksoslinux under windows). You can modify the definitions in these and other configuration packs
to suit your needs better. However, it is recommended to wait until you’re more familiar with Shinken before doing
so. For the time being, just follow the directions outlined below and you’ll be securely monitoring your Linux boxes
in no time.

Tip: In the example, the linux device being monitored is named srv-lin-1. To re-use the example, make sure to update
the hostname to that of your server.

364 Chapter 13. How to monitor ...

Shinken Documentation, Release 2.4

13.8.3 Installing/setup snmpd on srv-lin-1

First connect as root under srv-lin-1 with SSH (or putty/SecureCRT under windows).

Note: Todo: check if shinken.sh can do this, or with a deploy command?

RedHat like:

yum install snmpd

Debian like:

apt-get install snmpd

Edit the /etc/snmp/snmpd.conf and comment the line:

agentAddress udp:127.0.0.1:161

and uncomment the line:

agentAddress udp:161,udp6:[::1]:161

You can change the SNMP community (password) for your host in the line by changing the default value “public” by
what you prefer:

rocommunity public

Restart the snmpd daemon:

sudo /etc/init.d/snmpd restart

Test the connection

To see if the keys are working, just launch from your Shinken server. Change the “public” community value with your
one:

check_snmp -H srv-lin-1 -o .1.3.6.1.2.1.1.3.0 -C public

It should give you the uptime of the srv-lin-1 server.

13.8.4 Declare your new host in Shinken

If the SNMP community value is a global one you are using on all your hosts, you can configure it in the file
/etc/shinken/resource.cfg (or c:shinkenresource.cfg under windows) in the line:

$SNMPCOMMUNITYREAD$=public

Now it’s time to define some object definitions in your Shinken configuration files in order to monitor the new Linux
device.

You can add the new host definition in an existing configuration file, but it’s a good idea to have one file per host, it
will be easier to manage in the future. So create a file with the name of your server.

Under Linux:

linux:~ # vi /etc/shinken/hosts/srv-lin-1.cfg

Or Windows:

13.8. Monitoring Linux devices via SNMP 365

Shinken Documentation, Release 2.4

c:\ wordpad c:\shinken\etc\hosts\srv-lin-1.cfg

You need to add a new host definition for the GNU/Linux device that you’re going to monitor. Just copy/paste the
above definition Change the host_name and address fields to appropriate values for this device.

define host{
use linux
host_name srv-lin-1
address srv-lin-1.mydomain.com

}

* The use linux is the "template" line. It mean that this host will **inherits** properties from the linux template.

* the host_name is the object name of your host. It must be **unique**.

* the address is ... the network address of your linux server :)

If you are using a specific SNMP community for this host, you can configure it in the SNMPCOMUNITY host macro
like this:

define host{
use linux
host_name srv-lin-1
address srv-lin-1.mydomain.com
_SNMPCOMMUNITY password

}

What is checked with a linux template ?

At this point, you configure your host to be checked with a linux template. What does it means? It means that you got
some checks already configured for you:

• host check each 5 minutes: check with a ping that the server is UP

• check disk spaces

• check load average

• check the CPU usage

• check physical memory and swap usage

• check network interface activities

13.8.5 Restarting Shinken

You’re done with modifying the Shinken configuration, so you’ll need to verify your configuration files and restart
Shinken.

If the verification process produces any error messages, fix your configuration file before continuing. Make sure that
you don’t (re)start Shinken until the verification process completes without any errors!

13.9 Monitoring Microsoft Exchange

Abstract

This document describes how you can monitor devices running Microsoft Exchange. This monitoring covers typically:

366 Chapter 13. How to monitor ...

Shinken Documentation, Release 2.4

• Hub transport activity

• Hub transport queues

• Database activities

• Receive/send activities

• etc ...

13.9.1 Introduction

These instructions assume that you’ve installed Shinken according to the Installation tutorial. The sample configura-
tion entries below reference objects that are defined in the sample config files (“commands.cfg”, “templates.cfg”, etc.)
that was installed if you followed the quickstart.

13.9.2 Overview

Monitoring an Exchange device is possible the agentless by polling via the network using the WMI protocol, like we
proposed in the windows template.

13.9.3 Prerequisites

Have a valid account on the Microsoft Windows device (local or domain account) you will monitor using WMI queries
and already get the windows server monitor with the windows template.

13.9.4 Steps

There are several steps you’ll need to follow in order to monitor a Microsoft Exchange server.

• Add the good exchange template to your windows host in the configuration

• Restart the Shinken Arbiter

13.9.5 What’s Already Been Done For You

To make your life a bit easier, configuration templates are provided as a starting point:

• A selection of check_exchange_* based commands definitions have been added to the “commands.cfg” file.
This allows you to use the check_wmi_plus plugin.

• Some Exchange host templates are included the “templates.cfg” file. This allows you to add new host definitions
in a simple manner.

The above-mentioned config files can be found in the ///etc/shinken/packs/microsoft/exchange// directory. You can
modify the definitions in these and other templates to suit your needs. However, wait until you’re more familiar with
Shinken before doing so. For the time being, just follow the directions outlined below and you’ll be monitoring your
devices in no time.

13.9.6 Setup the check_wmi_plus plugin

If you already followed the windows monitoring tutorial, you should have the check_wmi_plus plugin installed. If it’s
not, please do it before activating this pack.

13.9. Monitoring Microsoft Exchange 367

Shinken Documentation, Release 2.4

13.9.7 Declare your host in Shinken

There are some templates available for the exchange monitoring, each for an exchange role.

• Hub transport: exchange-ht template

• Mail Box server: exchange-mb template

• CAS server: exchange-cas template

Now it’s time to define some object definitions in your Shinken configuration files in order to monitor the new Windows
machine.

We will suppose here that your server is named srv-win-1. Of course change this name with the real name of your
server.

Find your host definition and edit it:

Under Linux:

linux:~ # vi /etc/shinken/hosts/srv-win-1.cfg

Or Windows:

c:\ wordpad c:\shinken\etc\hosts\srv-win-1.cfg

All you need it to add the good template for your host. For example for a Hub Transport server:

define host{
use exchange-ht,exchange,windows
host_name srv-win-1
address srv-win-1.mydomain.com

}

* The use exchange-ht and exchange is the "template" line. It mean that this host will **inherits** properties from theses templates.

* the host_name is the object name of your host. It must be **unique**.

* the address is ... the network address of your host :)

The “exchange” template do not add any specific checks, but allow to link with the exchange contacts easily.

What is checked with an exchange template?

At this point, you configure your host to be checked with a windows template. What does it means? In addition to the
windows classic checks, it means that you got some checks already configured for you:

• Hub transport activity

• Hub transport queues

• Database activities

• Receive/send activities

The exchange-cas and exchange-mb do not have any specific checks from now.

Note: Any help is welcome here :)

368 Chapter 13. How to monitor ...

Shinken Documentation, Release 2.4

13.9.8 Restarting Shinken

You’re done with modifying the Shinken configuration, so you’ll need to verify your configuration files and restart
Shinken.

If the verification process produces any errors messages, fix your configuration file before continuing. Make sure that
you don’t (re)start Shinken until the verification process completes without any errors!

13.10 Monitoring Microsoft SQL databases

Abstract

This document describes how you can monitor a Mssql server such as:

• Connection time

• A recent restart

• The number of connections

• Cache hit

• Dead locks

• etc ...

13.10.1 Introduction

These instructions assume that you’ve installed Shinken according to the Installation tutorial. The sample configura-
tion entries below reference objects that are defined in the sample config files (“commands.cfg”, “templates.cfg”, etc.)
that are installed if you follow the quickstart.

13.10.2 Overview

Note: TODO: draw a check_mssql diag

Monitoring a Mssql server need the plugin check_mssql_health available at
labs.consol.de/lang/en/nagios/check_mssql_health/ and a mssql user account for the connection.

13.10.3 Steps

There are some steps you’ll need to follow in order to monitor a new database machine. They are:

• Install check plugins

• setup the mssql user account

• Update your windows server host definition for mysql monitoring

• Restart the Shinken daemon

13.10. Monitoring Microsoft SQL databases 369

http://labs.consol.de/lang/en/nagios/check_mssql_health/

Shinken Documentation, Release 2.4

13.10.4 What’s Already Done For You

To make your life a bit easier, a few configuration tasks have already been done for you:

• Some check_mssql_ commands definition has been added to the “commands.cfg” file.

• A Mssql host template (called “mssql”) has already been created in the “templates.cfg” file.

The above-mentioned config files can be found in the ///etc/shinken/// directory (or c:shinkenetc under windows).
You can modify the definitions in these and other definitions to suit your needs better if you’d like. However, I’d
recommend waiting until you’re more familiar with configuring Shinken before doing so. For the time being, just
follow the directions outlined below and you’ll be monitoring your Mssql boxes in no time.

Tip: We are supposing here that the Mssql machine you want to monitor is named srv-win-1. Please change the
above lines and commands with the real name of your server of course.

13.10.5 Installing the check plugins on Shinken

First connect as root under you Shinken server (or all poller servers for a multi-box setup)

Note: Todo: Use shinken.sh for this

13.10.6 Setup the mssql user account

Look at the labs.consol.de/lang/en/nagios/check_mssql_health/ page about how to configure your user connection.

Then you will need to configure your user/password in the macros file so the plugins will have the good values for the
connction. So update the /etc/shinken/resource.cfg file or c:shinkenetcresource.cfg file to setup the new password:

$MSSQLUSER$=shinken
$MSSQLPASSWORD$=shinkenpassword

Test the connection

To see if the connection is ok, just launch:

/var/lib/nagios/plugins/check_mssql_health --hostname srv-win-1 --username shinken --password shinkenpassword --mode connection-time

It should not return errors.

13.10.7 Declare your host as a mssql server

All you need to get all the Msql service checks is to add the mssql template to this host. We suppose you already
monitor the OS for this host, and so you already got the host configuration file for it.

Under Linux:

linux:~ # vi /etc/shinken/hosts/srv-win-1.cfg

Or Windows:

c:\ wordpad c:\shinken\etc\hosts\srv-win-1.cfg

370 Chapter 13. How to monitor ...

http://labs.consol.de/lang/en/nagios/check_mssql_health/

Shinken Documentation, Release 2.4

You need to add the mysql template in the use line. It’s better to follow the more precise template to the less one, like
here mssql first, and then windows.

define host{
use mssql,windows
host_name srv-win-1
address srv-win-1.mydomain.com

}

What is checked with a mssql template?

At this point, you configure your host to be checked with a mssql template. What does it means? It means that you
got some services checks already configured for you. Warning and alert levels are between ():

• connection-time: Measures how long it takes to login 0..n seconds (1, 5)

• connected-users: Number of connected users 0..n (50, 80)

• cpu-busy: CPU Busy Time 0%..100% (80, 90)

• io-busy: IO Busy Time 0%..100% (80, 90)

• full-scans: Number of Full Table Scans per second 0..n (100, 500)

• transactions: Number of Transactions per second 0..n (10000, 50000)

• batch-requests: Number of Batch Requests per second 0..n (100, 200)

• latches-waits: Number of Latch-Requests per second, which could not be fulfilled 0..n (10, 50)

• latches-wait-time: Average time a Latch-Request had to wait until it was granted 0..n ms (1, 5)

• locks-waits: Number of Lock-Requests per second, which could not be satisfied. 0..n (100, 500)

• locks-timeouts: Number of Lock-Requests per second, which resulted in a timeout. 0..n (1, 5)

• locks-deadlocks: Number of Deadlocks per second 0..n (1, 5)

• sql-recompilations: Number of Re-Compilations per second 0..n (1, 10)

• sql-initcompilations: Number of Initial Compilations per second 0..n (100, 200)

• total-server-memory: The main memory reserved for the SQL Server 0..n (nearly1G, 1G)

• mem-pool-data-buffer-hit-ratio: Data Buffer Cache Hit Ratio 0%..100% (90, 80:)

• lazy-writes: Number of Lazy Writes per second 0..n (20, 40)

• page-life-expectancy: Average time a page stays in main memory 0..n (300:, 180:)

• free-list-stalls: Number of Free List Stalls per second 0..n (4, 10)

• checkpoint-pages: Number of Flushed Dirty Pages per second 0..n ()

• database-free: Free space in a database (Default is percent, but –units can be used also). You can select a single
database with the name parameter. 0%..100% (5%, 2%)

• database-backup-age Elapsed time since a database was last backupped (in hours). The performancedata also
cover the time needed for the backup (in minutes). 0..n

13.10. Monitoring Microsoft SQL databases 371

Shinken Documentation, Release 2.4

13.10.8 Restarting Shinken

You’re done with modifying the Shiknen configuration, so you’ll need to verify your configuration files and restart
Shinken.

If the verification process produces any errors messages, fix your configuration file before continuing. Make sure that
you don’t (re)start Shinken until the verification process completes without any errors!

13.11 Monitoring MySQL databases

Abstract

This document describes how you can monitor a MySQL server such as:

• Connection time

• A recent restart

• The number of connections

• Cache hit

• etc...

13.11.1 Introduction

These instructions assume that you’ve installed Shinken according to the Installation tutorial. The sample configura-
tion entries below reference objects that are defined in the sample config files (“commands.cfg”, “templates.cfg”, etc.)
that are installed if you follow the quickstart.

13.11.2 Overview

Note: TODO: draw a check_mysql diag

Monitoring a MySQL server need the plugin check_mysql_health available at
labs.consol.de/lang/en/nagios/check_mysql_health/ and a mysql user account for the connection.

13.11.3 Steps

There are some steps you’ll need to follow in order to monitor a new Linux machine. They are:

• Install check plugins

• setup the mysql user account

• Update your server host definition for mysql monitoring

• Restart the Shinken daemon

372 Chapter 13. How to monitor ...

http://labs.consol.de/lang/en/nagios/check_mysql_health/

Shinken Documentation, Release 2.4

13.11.4 What’s Already Done For You

To make your life a bit easier, a few configuration tasks have already been done for you:

• Some check_mysql_ commands definition has been added to the “commands.cfg” file.

• A Mysql host template (called “mysql”) has already been created in the “templates.cfg” file.

The above-mentioned config files can be found in the ///etc/shinken/// directory (or c:shinkenetc under windows).
You can modify the definitions in these and other definitions to suit your needs better if you’d like. However, I’d
recommend waiting until you’re more familiar with configuring Shinken before doing so. For the time being, just
follow the directions outlined below and you’ll be monitoring your Mysql boxes in no time.

Tip: We are supposing here that the Mysql machine you want to monitor is named srv-lin-1 and is a Linux. Please
change the above lines and commands with the real name of your server of course.

13.11.5 Installing the check plugins on Shinken

First connect as root under you Shinken server (or all poller servers for a multi-box setup) and launch:

shinken.sh -p check_mysql_health

13.11.6 Setup the mysql user account

Connect with a root account on your MySQL database. change ‘password’ with your mysql root password:

lin-srv-1:# mysql -u root -ppassword

And create a shinken user:

GRANT usage ON *.* TO 'shinken'@'%' IDENTIFIED BY 'shinkenpassword';

It’s a good thing to change the shinkenpassword to another password. Then you need to update the
/etc/shinken/resource.cfg file or c:shinkenetcresource.cfg file to setup the new password:

$MYSQLUSER$=shinken
$MYSQLPASSWORD$=shinkenpassword

Test the connection

To see if the connection is okay, just launch:

/var/lib/nagios/plugins/check_mysql_health --hostname srv-lin-1 --username shinken --password shinkenpassword --mode connection-time

It should not return errors.

13.11.7 Declare your host as a mysql server

All you need to get all the MySQL service checks is to add the mysql template to this host. We suppose you already
monitor the OS (linux or windows for example) for this host, and so you already got the host configuration file for it.

Under Linux:

13.11. Monitoring MySQL databases 373

Shinken Documentation, Release 2.4

linux:~ # vi /etc/shinken/hosts/srv-lin-1.cfg

Or Windows:

c:\ wordpad c:\shinken\etc\hosts\srv-lin-1.cfg

You need to add the mysql template in the use line. It’s better to follow the more precise template to the less one, like
here mysql first, and then linux.

define host{
use mysql,linux
host_name srv-lin-1
address srv-lin-1.mydomain.com

}

What is checked with a mysql template?

At this point, you configure your host to be checked with a mysql template. What does it means? It means that you
got some services checks already configured for you. Warning and alert levels are between ():

• connection-time: Determines how long connection establishment and login take, 0..n Seconds (1, 5)

• uptime: Time since start of the database server (recognizes DB-Crash+Restart), 0..n Seconds (10:, 5: Minutes)

• threads-connected: Number of open connections, 1..n (10, 20)

• threadcache-hitrate: Hitrate in the Thread-Cache 0%..100% (90:, 80:)

• querycache-hitrate: Hitrate in the Query Cache 0%..100% (90:, 80:)

• querycache-lowmem-prunes: Displacement out of the Query Cache due to memory shortness n/sec (1, 10)

• keycache-hitrate: Hitrate in the Myisam Key Cache 0%..100% (99:, 95:)

• bufferpool-hitrate: Hitrate in the InnoDB Buffer Pool 0%..100% (99:, 95:)

• bufferpool-wait-free: Rate of the InnoDB Buffer Pool Waits 0..n/sec (1, 10)

• log-waits: Rate of the InnoDB Log Waits 0..n/sec (1, 10)

• tablecache-hitrate: Hitrate in the Table-Cache 0%..100% (99:, 95:)

• table-lock-contention: Rate of failed table locks 0%..100% (1, 2)

• index-usage: Sum of the Index-Utilization (in contrast to Full Table Scans) 0%..100% (90:, 80:)

• tmp-disk-tables: Percent of the temporary tables that were created on the disk instead in memory 0%..100% (25,
50)

• slow-queries: Rate of queries that were detected as “slow” 0..n/sec (0.1, 1)

• long-running-procs: Sum of processes that are running longer than 1 minute 0..n (10, 20)

• slave-lag: Delay between Master and Slave 0..n Seconds

• slave-io-running: Checks if the IO-Thread of the Slave-DB is running

• slave-sql-running: Checks if the SQL-Thread of the Slave-DB is running

• open-files: Number of open files (of upper limit) 0%..100% (80, 95)

• cluster-ndb-running: Checks if all cluster nodes are running.

374 Chapter 13. How to monitor ...

Shinken Documentation, Release 2.4

13.11.8 Restarting Shinken

You’re done with modifying the Shinken configuration, so you’ll need to verify your configuration files and restart
Shinken.

If the verification process produces any errors messages, fix your configuration file before continuing. Make sure that
you don’t (re)start Shinken until the verification process completes without any errors!

13.12 Monitoring Routers and Switches

Abstract

This document describes how you can monitor the status of network switches and routers. Some cheaper “unmanaged”
switches and hubs don’t have IP addresses and are essentially invisible on your network, so there’s not any way to
monitor them. More expensive switches and routers have addresses assigned to them and can be monitored by pinging
them or using “SNMP” to query status information.

13.12.1 Introduction

I’ll describe how you can monitor the following things on managed switches, hubs, and routers:

• Packet loss, round trip average

• “SNMP” status information

• Bandwidth / traffic rate

These instructions assume that you’ve installed Shinken according to the quickstart guide. The sample configuration
entries below reference objects that are defined in the sample config files (“commands.cfg”, “templates.cfg”, etc.) that
are installed when you follow the quickstart.

13.12. Monitoring Routers and Switches 375

Shinken Documentation, Release 2.4

13.12.2 Overview

Monitoring switches and routers can either be easy or more involved - depending on what equipment you have and
what you want to monitor. As they are critical infrastructure components, you’ll no doubt want to monitor them in at
least some basic manner.

Switches and routers can be monitored easily by “pinging” them to determine packet loss, RTA, etc. If your switch
supports “SNMP”, you can monitor port status, etc. with the check_snmp plugin and bandwidth (if you’re using
MRTG) with the check_mrtgtraf plugin.

The check_snmp plugin will only get compiled and installed if you have the net-snmp and net-snmp-utils packages
installed on your system. Make sure the plugin exists in the monitoring-plugins directory before you continue. The
path to this directory depend on your OS (example : /usr/lib/nagios/plugins). If it doesn’t, install net-snmp and net-
snmp-utils and recompile/reinstall the Nagios plugins.

13.12.3 Steps

There are several steps you’ll need to follow in order to monitor a new router or switch. They are:

• Perform first-time prerequisites

• Create new host and service definitions for monitoring the device

• Restart Shinken services

13.12.4 What’s Already Done For You

To make your life a bit easier, a few configuration tasks have already been done for you:

• Two command definitions (check_snmp and check_local_mrtgtraf) have been added to the “commands.cfg” file.
These allows you to use the check_snmp and check_mrtgtraf plugins to monitor network routers.

• A switch host template (called generic-switch) has already been created in the “templates.cfg” file. This allows
you to add new router/switch host definitions in a simple manner.

The above-mentioned config files can be found in the “/etc/shinken/objects/” directory. You can modify the definitions
in these and other definitions to suit your needs better if you’d like. However, I’d recommend waiting until you’re
more familiar with configuring Shinken before doing so. For the time being, just follow the directions outlined below
and you’ll be monitoring your network routers/switches in no time.

376 Chapter 13. How to monitor ...

Shinken Documentation, Release 2.4

Important: The commands are in fact not included yet in commands.cfg

13.12.5 Prerequisites

The first time you configure Shinken to monitor a network switch, you’ll need to do a bit of extra work. Remember,
you only need to do this for the first switch you monitor.

Edit the main Shinken config file.

linux:~ # vi /etc/shinken/nagios.cfg

Remove the leading pound (#) sign from the following line in the main configuration file:

cfg_file=/etc/shinken/objects/switch.cfg

Save the file and exit.

What did you just do? You told Shinken to look to the “/etc/shinken/objects/switch.cfg” to find additional object
definitions. That’s where you’ll be adding host and service definitions for routers and switches. That configuration
file already contains some sample host, hostgroup, and service definitions. For the first router/switch you monitor, you
can simply modify the sample host and service definitions in that file, rather than creating new ones.

13.12.6 Configuring Shinken

You’ll need to create some object definitions in order to monitor a new router/switch.

Open the “switch.cfg” file for editing.

linux:~ # vi /etc/shinken/objects/switch.cfg

Add a new host definition for the switch that you’re going to monitor. If this is the first switch you’re monitoring, you
can simply modify the sample host definition in “switch.cfg”. Change the “host_name”, “alias”, and “address” fields
to appropriate values for the switch.

define host{
use generic-switch ; Inherit default values from a template
host_name linksys-srw224p ; The name we're giving to this switch
alias Linksys SRW224P Switch ; A longer name associated with the switch
address 192.168.1.253 ; IP address of the switch
hostgroups allhosts,switches ; Host groups this switch is associated with

}

13.12.7 Monitoring Services

Now you can add some service definitions (to the same configuration file) to monitor different aspects of the switch.
If this is the first switch you’re monitoring, you can simply modify the sample service definition in “switch.cfg”.

Replace linksys-srw224p in the example definitions below with the name you specified in the “host_name” directive
of the host definition you just added.

13.12.8 Monitoring Packet Loss and RTA

Add the following service definition in order to monitor packet loss and round trip average between the Shinken host
and the switch every 5 minutes under normal conditions.

13.12. Monitoring Routers and Switches 377

Shinken Documentation, Release 2.4

define service{
use generic-service
host_name linksys-srw224p
service_description PING
check_command check_ping!200.0,20%!600.0,60%
normal_check_interval 5
retry_check_interval 1

}

Inherit values from a template
The name of the host the service is associated with
The service description
The command used to monitor the service
Check the service every 5 minutes under normal conditions
Re-check the service every minute until its final/hard state is determined

This service will be:

• CRITICAL if the round trip average (RTA) is greater than 600 milliseconds or the packet loss is 60% or more

• WARNING if the RTA is greater than 200 ms or the packet loss is 20% or more

• OK if the RTA is less than 200 ms and the packet loss is less than 20%

13.12.9 Monitoring SNMP Status Information

If your switch or router supports “SNMP”, you can monitor a lot of information by using the check_snmp plugin. If
it doesn’t, skip this section.

Add the following service definition to monitor the uptime of the switch.

define service{
use generic-service ; Inherit values from a template
host_name linksys-srw224p
service_description Uptime
check_command check_snmp!-C public -o sysUpTime.0

}

In the “check_command” directive of the service definition above, the “-C public” tells the plugin that the “SNMP”
community name to be used is “public” and the “-o sysUpTime.0” indicates which OID should be checked.

If you want to ensure that a specific port/interface on the switch is in an up state, you could add a service definition
like this:

define service{
use generic-service ; Inherit values from a template
host_name linksys-srw224p
service_description Port 1 Link Status
check_command check_snmp!-C public -o ifOperStatus.1 -r 1 -m RFC1213-MIB

}

In the example above, the “-o ifOperStatus.1” refers to the OID for the operational status of port 1 on the switch.

The “-r 1” option tells the check_snmp plugin to return an OK state if “1” is found in the “SNMP” result (1 indicates
an “up” state on the port) and CRITICAL if it isn’t found.

The “-m RFC1213-MIB” is optional and tells the check_snmp plugin to only load the “RFC1213-MIB” instead of
every single MIB that’s installed on your system, which can help speed things up.

378 Chapter 13. How to monitor ...

Shinken Documentation, Release 2.4

That’s it for the “SNMP” monitoring example. There are a million things that can be monitored via “SNMP”, so its
up to you to decide what you need and want to monitor. Good luck!

You can usually find the OIDs that can be monitored on a switch by running the following command (replace
192.168.1.253 with the IP address of the switch): snmpwalk -v1 -c public 192.168.1.253 -m ALL .1

13.12.10 Monitoring Bandwidth / Traffic Rate

If you’re monitoring bandwidth usage on your switches or routers using MRTG, you can have Shinken alert you when
traffic rates exceed thresholds you specify. The check_mrtgtraf plugin (which is included in the Nagios plugins
distribution) allows you to do this.

You’ll need to let the check_mrtgtraf plugin know what log file the MRTG data is being stored in, along with
thresholds, etc. In my example, I’m monitoring one of the ports on a Linksys switch. The MRTG log file is stored in
“/var/lib/mrtg/192.168.1.253_1.log”. Here’s the service definition I use to monitor the bandwidth data that’s stored in
the log file...

define service{
use generic-service ; Inherit values from a template
host_name linksys-srw224p
service_description Port 1 Bandwidth Usage
check_command check_local_mrtgtraf!/var/lib/mrtg/192.168.1.253_1.log!AVG!1000000,2000000!5000000,5000000!10

}

In the example above, the “/var/lib/mrtg/192.168.1.253_1.log” option that gets passed to the check_local_mrtgtraf
command tells the plugin which MRTG log file to read from.

The AVG option tells it that it should use average bandwidth statistics. The “1000000,2000000” options are the
warning thresholds (in bytes) for incoming traffic rates.

The “5000000,5000000” are critical thresholds (in bytes) for outgoing traffic rates. The “10” option causes the plugin
to return a CRITICAL state if the MRTG log file is older than 10 minutes (it should be updated every 5 minutes).

Save the file.

13.12.11 Restarting Shinken

Once you’ve added the new host and service definitions to the “switch.cfg” file, you’re ready to start monitoring the
router/switch. To do this, you’ll need to verify your configuration and restart Sinken.

If the verification process produces any errors messages, fix your configuration file before continuing. Make sure that
you don’t (re)start Shinken until the verification process completes without any errors!

13.13 Monitoring Network devices

Abstract

This document describes how you can monitor network devices (Cisco, Nortel, Procurve,...), such as:

• Network usage

• CPU load

• Memory usage

• Port state

• Hardware state

13.13. Monitoring Network devices 379

http://oss.oetiker.ch/mrtg/

Shinken Documentation, Release 2.4

• etc.

13.13.1 Introduction

These instructions assume that you have installed Shinken according to the Installation tutorial. The sample config-
uration entries below reference objects that are defined in the sample config files (“commands.cfg”, “templates.cfg”,
etc.) that are installed if you followed the quickstart.

13.13.2 Overview

Note: TODO: draw a by snmp diag

Network devices are typically monitored using the SNMP and ICMP(ping) protocol.

13.13.3 Steps

Here are the steps you will need to follow in order to monitor a new device:

• Setup check_nwc_health and try a connection with the equipment

• Create new host definition to monitor this device

• Restart the Shinken daemon

13.13.4 What’s Already Been Done For You

To make your life a bit easier, a few configuration tasks have already been done for you:

• A selection of check_nwc_health command definitions have been added to the “commands.cfg” file.

• A network equipement host template (called “switch”) has already been created in the “templates.cfg” file. This
allows you to add new host definitions with a simple keyword.

The above-mentioned configuration files can be found in the ///etc/shinken///packs/network/switch directory (or
c:shinkenetcpacksnetworkswitch under windows). You can modify the definitions in these and other configuration
packs to suit your needs better. However, it is recommended to wait until you are familiar with Shinken before doing
so. For the time being, just follow the directions outlined below and you will be securely monitoring your devices in
no time.

Tip: In the example, the switch device being monitored is named switch-1. To re-use the example, make sure to
update the hostname to that of your device.

13.13.5 Setup check_nwc_health and try a connection switch-1

First connect as the shinken user under your shinken host.

Unix like to install check_nwc_health:

install -p check_nwc_health

380 Chapter 13. How to monitor ...

Shinken Documentation, Release 2.4

Now to try to check your switch, for this you need a read community for it. Consult your device vendors documentation
on how to change the SNMP community. The default value is “public”. The most efficient, though less secure protocol
version of SNMP is version 2c. Version 3 includes encryption and user/password combinations, but is more convoluted
to configure and may tax your devices CPU, it is beyond the scope of this tutorial.

Now connect as the shinken user.

su - shinken

Warning: NEVER launch plugins like check_* under the root account, because it can work under root but will
deposit temporary files that will break the plugins when executed with the shinken user.

Let’s say that the switch-1 IP is 192.168.0.1.

/var/lib/shinken/libexec/check_nwc_health --hostname 192.168.0.1 --timeout 60 --community "public" --mode interface-status

It should give you the state of all interfaces.

13.13.6 Declare your switch in Shinken

If the SNMP community value is a global one you are using on all your hosts, you can configure it in the file
/etc/shinken/resource.cfg (or c:shinkenresource.cfg under windows) in the line:

$SNMPCOMMUNITYREAD$=public

Now it’s time to define some object definitions in your Shinken configuration files in order to monitor the new Linux
device.

You can add the new host definition in an existing configuration file, but it’s a good idea to have one file per host, it
will be easier to manage in the future. So create a file with the name of your server.

Under Linux:

linux:~ # vi /etc/shinken/hosts/switch-1.cfg

Or Windows:

c:\ wordpad c:\shinken\etc\hosts\switch-1.cfg

You need to add a new host definition for the switch device that you’re going to monitor. Just copy/paste the above
definition Change the “host_name”, and “address” fields to appropriate values for this device.

define host{
use switch
host_name switch-1
address 192.168.0.1

}

* The use switch is the "template" line. It mean that this host will **inherit** properties and checks from the switch template.

* the host_name is the object name of your host. It must be **unique**.

* the address is the network address or FQDN of your switch.

If you are using a specific SNMP community for this host, you can configure it in the SNMPCOMUNITY host macro
like this:

define host{
use switch
host_name switch-1

13.13. Monitoring Network devices 381

Shinken Documentation, Release 2.4

address 192.168.0.1
_SNMPCOMMUNITY password

}

What is checked with a switch template?

At this point, you configure your host to be checked with a switch template. What does it means? It means that you
got some checks already configured for you:

• host check each 5 minutes: check with a ping that the device is UP

• interface usage

• interface status

• interface errors

For CPU/memory/Hardware checks

Not all devices are managed by check_nwc_health. To know if yours is, just launch:

/var/lib/shinken/libexec/check_nwc_health --hostname 192.168.0.1 --timeout 60 --community "public" --mode hardware-health

If it’s ok, you can add the “cisco” template for your hosts (even if it’s not a cisco device, we are working on getting
more templates configuration).

define host{
use cisco,switch
host_name switch-1
address 192.168.0.1
_SNMPCOMMUNITY password

}

If it does not work, to learn more about your device, please launch the command:

snmpwalk -v2c -c public 192.168.0.1 | bzip2 > /tmp/device.bz2

And launch this this command as well:

nmap -T4 -O -oX /tmp/device.xml 192.168.0.1

Once you have done that, send us the device.bz2 and device.xml files (located in /tmp directory), we will add this new
device to the check_nwc_health plugin in addition to the discovery module. With these files please also provide some
general information about the device, so we will incorporate it correctly into the discovery module.

13.13.7 Restarting Shinken

You’re done with modifying the Shinken configuration, you will need to verify your configuration files and restart
Shinken.

If the verification process produces any errors messages, fix your configuration file before continuing. Make sure that
you don’t (re)start Shinken until the verification process completes without any errors!

382 Chapter 13. How to monitor ...

Shinken Documentation, Release 2.4

13.14 Monitoring Oracle databases

Abstract

This document describes how you can monitor an Oracle database server such as:

• Connection time

• A recent restart

• The number of connections

• Cache hit

• Dead locks

• etc ...

13.14.1 Introduction

These instructions assume that you’ve installed Shinken according to the Installation tutorial. The sample configura-
tion entries below reference objects that are defined in the sample config files (“commands.cfg”, “templates.cfg”, etc.)
that are installed if you follow the quickstart.

13.14.2 Overview

Note: TODO: draw a oracle diag

Monitoring an Oracle server need the plugin check_oracle_health available at
labs.consol.de/lang/en/nagios/check_oracle_health/ and an oracle user account for the connection.

13.14.3 Steps

There are some steps you’ll need to follow in order to monitor a new database machine. They are:

• Install dependencies

• Install check plugins

• Setup the oracle user account

• Creating an alias definition for Oracle databases

• Update your server host definition for oracle monitoring

• Restart the Shinken daemon

13.14.4 What’s Already Done For You

To make your life a bit easier, a few configuration tasks have already been done for you:

• Some check_oracle_ commands definition has been added to the “commands.cfg” file.

• An Oracle host template (called “oracle”) has already been created in the “templates.cfg” file.

13.14. Monitoring Oracle databases 383

http://labs.consol.de/lang/en/nagios/check_oracle_health/

Shinken Documentation, Release 2.4

The above-mentioned config files can be found in the ///etc/shinken/// directory (or c:shinkenetc under windows).
You can modify the definitions in these and other definitions to suit your needs better if you’d like. However, I’d
recommend waiting until you’re more familiar with configuring Shinken before doing so. For the time being, just
follow the directions outlined below and you’ll be monitoring your Oracle boxes in no time.

Tip: We are supposing here that the Oracle machine you want to monitor is named srv-lin-1 and is a linux. Please
change the above lines and commands with the real name of your server of course.

13.14.5 Installing dependencies

Installing SQL*Plus on the Shinken server

Check_oracle_health plugin needs sqlplus oracle client on the Shinken server, you can download packages on the
Oracle Technology Network website. You need to have these 3 packages: oracle-instantclient11.2-basic-11.2.0.3.0-
1.x86_64.rpm oracle-instantclient11.2-devel-11.2.0.3.0-1.x86_64.rpm oracle-instantclient11.2-sqlplus-11.2.0.3.0-
1.x86_64.rpm

You can install them like this:

linux:~ # rpm -Uvh oracle-instantclient11.2-*

Then you have to create some symbolic links in order to have commands in the path:

linux:~ # ln -s /usr/lib/oracle/11.2/client64/bin/adrci /usr/bin/adrci
linux:~ # ln -s /usr/lib/oracle/11.2/client64/bin/genezi /usr/bin/genezi
linux:~ # ln -s /usr/lib/oracle/11.2/client64/bin/sqlplus /usr/bin/sqlplus

Also, you need to export Oracle environment variables in order to install CPAN modules:

linux:~ # export ORACLE_HOME=/usr/lib/oracle/11.2/client64
linux:~ # export PATH=$PATH:$ORACLE_HOME/bin
linux:~ # export LD_LIBRARY_PATH=$ORACLE_HOME/lib

Installing CPAN modules

linux:~ # perl -MCPAN -e shell
cpan[1]> install DBI
cpan[2]> force install DBD::Oracle

13.14.6 Installing the check plugins on Shinken

First connect as root under you Shinken server (or all poller servers for a multi-box setup) and launch:

shinken.sh -p check_oracle_health

13.14.7 Setup the oracle user account

Tip: You will need to configure the user for all your oracle databases.

Connect to your database as sysadmin on the oracle server:

384 Chapter 13. How to monitor ...

Shinken Documentation, Release 2.4

srv-lin-1:oracle# sqlplus "/ as sysdba"

And then create your shinken account on the database:

CREATE USER shinken IDENTIFIED BY shinkenpassword;
GRANT CREATE SESSION TO shinken;
GRANT SELECT any dictionary TO shinken;
GRANT SELECT ON V_$SYSSTAT TO shinken;
GRANT SELECT ON V_$INSTANCE TO shinken;
GRANT SELECT ON V_$LOG TO shinken;
GRANT SELECT ON SYS.DBA_DATA_FILES TO shinken;
GRANT SELECT ON SYS.DBA_FREE_SPACE TO shinken;

And for old 8.1.7 database only:

--
-- if somebody still uses Oracle 8.1.7...
GRANT SELECT ON sys.dba_tablespaces TO shinken;
GRANT SELECT ON dba_temp_files TO shinken;
GRANT SELECT ON sys.v_$Temp_extent_pool TO shinken;
GRANT SELECT ON sys.v_$TEMP_SPACE_HEADER TO shinken;
GRANT SELECT ON sys.v_$session TO shinken;

Then you will need to configure your user/password in the macros file so the plugins will have the good values for the
connction. So update the /etc/shinken/resource.cfg file or c:\shinken\etc\resource.cfg file to setup the new password:

$ORACLEUSER$=shinken
$ORACLEPASSWORD$=shinkenpassword

13.14.8 Creating an alias definition for Oracle databases

First, you have to create a tnsnames.ora config file on the shinken server that will contain the alias definition for PROD
database:

linux:~ # mkdir -p /usr/lib/oracle/11.2/client64/network/admin
linux:~ # vim /usr/lib/oracle/11.2/client64/network/admin/tnsnames.ora
PROD =
(DESCRIPTION =

(ADDRESS = (PROTOCOL = TCP)(HOST = 192.168.0.X)(PORT = 1521))
(CONNECT_DATA =
(SERVER = DEDICATED)
(SERVICE_NAME = PROD)

)
)

:wq

Note that you have to declare all databases that you want to monitor with Shinken in this file. For example, if you
want to monitor ERP and FINANCE databases, your config file will look like this:

ERP =
(DESCRIPTION =

(ADDRESS = (PROTOCOL = TCP)(HOST = 192.168.0.X)(PORT = 1521))
(CONNECT_DATA =
(SERVER = DEDICATED)
(SERVICE_NAME = ERP)

)
)

13.14. Monitoring Oracle databases 385

Shinken Documentation, Release 2.4

FINANCE =
(DESCRIPTION =

(ADDRESS = (PROTOCOL = TCP)(HOST = 192.168.0.X)(PORT = 1521))
(CONNECT_DATA =
(SERVER = DEDICATED)
(SERVICE_NAME = FINANCE)

)
)

Then, you need define an environment variable that will contain the path of this file with also all others variables
related to sqlplus:

linux:~ # vi /etc/profile.d/oracle.sh

export PATH=$PATH:/usr/lib/oracle/11.2/client64
export LD_LIBRARY_PATH=/usr/lib/oracle/11.2/client64/lib
export ORACLE_HOME=/usr/lib/oracle/11.2/client64
export TNS_ADMIN=$ORACLE_HOME/network/admin

:wq

Adjust rights on the oracle client directory:

linux:~ # chown -R shinken:shinken /usr/lib/oracle

Optionally, we may have to force loading the oracle client lib like this:

linux:~ # vi /etc/ld.so.conf.d/oracle.conf
/usr/lib/oracle/11.2/client64/lib
:wq
linux:~ # ldconfig

Test the connection

To see if the connection to the database named PROD is ok, just launch:

/var/lib/nagios/plugins/check_oracle_health --connect "PROD" --hostname srv-lin-1 --username shinken --password shinkenpassword --mode connection-time

It should not return errors.

Edit shinken init script

Now, you have to edit the shinken init script for loading this new environment:

linux:~ # vim /etc/init.d/shinken
(...)
NAME="shinken"

AVAIL_MODULES="scheduler poller reactionner broker receiver arbiter skonf"

Load environment variables
. /etc/profile.d/oracle.sh

SHINKEN_MODULE_FILE is set by shinken-* if it's one of these that's calling us.
(...)

386 Chapter 13. How to monitor ...

Shinken Documentation, Release 2.4

13.14.9 Declare your host as an oracle server, and declare your databases

All you need to get all the Oracle service checks is to add the oracle template to this host and declare all your databases
name. We suppose you already monitor the OS for this host, and so you already got the host configuration file for it.

Under Linux:

linux:~ # vi /etc/shinken/hosts/srv-lin-1.cfg

Or Windows:

c:\ wordpad c:\shinken\etc\hosts\srv-lin-1.cfg

You need to add the oracle template in the use line. It’s better to follow the more precise template to the less one,
like here oracle first, and then linux. You also need to declare in the _databases macros all your database names,
separated with comas. Here we suppose you got two databases, ERP and FINANCE (don’t forget to declare them into
the tnsnames.ora config file such as we described it previously):

define host{
use oracle,linux
host_name srv-lin-1
address srv-lin-1.mydomain.com
_databases ERP,FINANCE

}

What is checked with a oracle template?

At this point, you configure your host to be checked with a oracle template. What does it means? It means that you got
some services checks already configured for you, and one for each databases you declared. Warning and alert levels
are between ():

• tnsping: Listener

• connection-time: Determines how long connection establishment and login take 0..n Seconds (1, 5)

• connected-users: The sum of logged in users at the database 0..n (50, 100)

• session-usage: Percentage of max possible sessions 0%..100% (80, 90)

• process-usage: Percentage of max possible processes 0%..100% (80, 90)

• rman-backup-problems: Number of RMAN-errors during the last three days 0..n (1, 2)

• sga-data-buffer-hit-ratio: Hitrate in the Data Buffer Cache 0%..100% (98:, 95:)

• sga-library-cache-gethit-ratio: Hitrate in the Library Cache (Gets) 0%..100% (98:, 95:)

• sga-library-cache-pinhit-ratio: Hitrate in the Library Cache (Pins) 0%..100% (98:, 95:)

• sga-library-cache-reloads: Reload-Rate in the Library Cache n/sec (10,10)

• sga-dictionary-cache-hit-ratio: Hitrate in the Dictionary Cache 0%..100% (95:, 90:)

• sga-latches-hit-ratio: Hitrate of the Latches 0%..100% (98:, 95:)

• sga-shared-pool-reloads: Reload-Rate in the Shared Pool 0%..100% (1, 10)

• sga-shared-pool-free: Free Memory in the Shared Pool 0%..100% (10:, 5:)

• pga-in-memory-sort-ratio: Percentage of sorts in the memory. 0%..100% (99:, 90:)

• invalid-objects: Sum of faulty Objects, Indices, Partitions

• stale-statistics: Sum of objects with obsolete optimizer statistics n (10, 100)

13.14. Monitoring Oracle databases 387

Shinken Documentation, Release 2.4

• tablespace-usage: Used diskspace in the tablespace 0%..100% (90, 98)

• tablespace-free: Free diskspace in the tablespace 0%..100% (5:, 2:)

• tablespace-fragmentation: Free Space Fragmentation Index 100..1 (30:, 20:)

• tablespace-io-balanc: IO-Distribution under the datafiles of a tablespace n (1.0, 2.0)

• tablespace-remaining-time: Sum of remaining days until a tablespace is used by 100%. The rate of increase
will be calculated with the values from the last 30 days. (With the parameter –lookback different periods can be
specified) Days (90:, 30:)

• tablespace-can-allocate-next: Checks if there is enough free tablespace for the next Extent.

• flash-recovery-area-usage: Used diskspace in the flash recovery area 0%..100% (90, 98)

• flash-recovery-area-free: Free diskspace in the flash recovery area 0%..100% (5:, 2:)

• datafile-io-traffic: Sum of IO-Operationes from Datafiles per second n/sec (1000, 5000)

• datafiles-existing: Percentage of max possible datafiles 0%..100% (80, 90)

• soft-parse-ratio: Percentage of soft-parse-ratio 0%..100%

• switch-interval: Interval between RedoLog File Switches 0..n Seconds (600:, 60:)

• retry-ratio: Retry-Rate in the RedoLog Buffer 0%..100% (1, 10)

• redo-io-traffic: Redolog IO in MB/sec n/sec (199,200)

• roll-header-contention: Rollback Segment Header Contention 0%..100% (1, 2)

• roll-block-contention: Rollback Segment Block Contention 0%..100% (1, 2)

• roll-hit-ratio: Rollback Segment gets/waits Ratio 0%..100% (99:, 98:)

• roll-extends: Rollback Segment Extends n, n/sec (1, 100)

• roll-wraps: Rollback Segment Wraps n, n/sec (1, 100)

• seg-top10-logical-reads: Sum of the userprocesses under the top 10 logical reads n (1, 9)

• seg-top10-physical-reads: Sum of the userprocesses under the top 10 physical reads n (1, 9)

• seg-top10-buffer-busy-waits: Sum of the userprocesses under the top 10 buffer busy waits n (1, 9)

• seg-top10-row-lock-waits: Sum of the userprocesses under the top 10 row lock waits n (1, 9)

• event-waits: Waits/sec from system events n/sec (10,100)

• event-waiting: How many percent of the elapsed time has an event spend with waiting 0%..100% (0.1,0.5)

• enqueue-contention: Enqueue wait/request-Ratio 0%..100% (1, 10)

• enqueue-waiting: How many percent of the elapsed time since the last run has an Enqueue spend with waiting
0%..100% (0.00033,0.0033)

• latch-contention: Latch misses/gets-ratio. With –name a Latchname or Latchnumber can be passed over. (See
list-latches) 0%..100% (1,2)

• latch-waiting: How many percent of the elapsed time since the last run has a Latch spend with waiting 0%..100%
(0.1,1)

• sysstat: Changes/sec for any value from v$sysstat n/sec (10,10)

388 Chapter 13. How to monitor ...

Shinken Documentation, Release 2.4

13.14.10 Restarting Shinken

You’re done with modifying the Shiknen configuration, so you’ll need to verify your configuration files and restart
Shinken.

If the verification process produces any errors messages, fix your configuration file before continuing. Make sure that
you don’t (re)start Shinken until the verification process completes without any errors!

13.15 Monitoring Printers

Abstract

This document describes how you can monitor a printer. Specifically, HP™ printers that have internal/external JetDi-
rect® cards/devices, or other print servers (like the Troy™ PocketPro 100S® or the Netgear™ PS101®) that support
the JetDirect protocol.

The check_hpjd plugin (which is part of the standard Nagios/Shinken plugins distribution) allows you to monitor the
status of JetDirect-capable printers which have “SNMP” enabled. The plugin is capable of detecting the following
printer states:

• Paper Jam

• Out of Paper

• Printer Offline

• Intervention Required

• Toner Low

• Insufficient Memory

• Open Door

• Output Tray is Full

• and more...

13.15.1 Introduction

These instructions assume that you’ve installed Shinken according to the Installation tutorial. The sample configura-
tion entries below reference objects that are defined in the sample config files (“commands.cfg”, “templates.cfg”, etc.)
that are installed if you follow the quickstart.

13.15. Monitoring Printers 389

Shinken Documentation, Release 2.4

13.15.2 Overview

Monitoring the status of a networked printer is pretty simple. JetDirect-enabled printers usually have “SNMP” enabled,
which allows Shinken to monitor their status using the check_hpjd plugin.

The check_hpjd plugin will only get compiled and installed if you have the net-snmp and net-snmp-utils packages
installed on your system. Make sure the plugin exists in “/var/lib/nagios/” before you continue. If it doesn’t, install
net-snmp and net-snmp-utils and recompile/reinstall the Nagios plugins.

13.15.3 Steps

There are some steps you’ll need to follow in order to monitor a new printer machine. They are:

• Create new host definition for monitoring this machine

• Restart the Shinken daemon

13.15.4 What’s Already Done For You

To make your life a bit easier, a few configuration tasks have already been done for you:

• A check_hpjd command definition has been added to the “commands.cfg” file. This allows you to use the
check_hpjd plugin to monitor network printers.

• A printer host template (called printer) has already been created in the “templates.cfg” file. This allows you to
add new printer host definitions in a simple manner.

The above-mentioned config files can be found in the ///etc/shinken/// directory (or c:shinkenetc under windows).
You can modify the definitions in these and other definitions to suit your needs better if you’d like. However, I’d
recommend waiting until you’re more familiar with configuring Shinken before doing so. For the time being, just
follow the directions outlined below and you’ll be monitoring your printers in no time.

Tip: We are supposing here that the printer machine you want to monitor is named printer-1. Please change the above
lines and commands with the real name of your printer of course.

13.15.5 Declare your new printer in Shinken

Now it’s time to define some object definitions in your Shinken configuration files in order to monitor the new Linux
machine.

You can add the new host definition in an existing configuration file, but it’s a good idea to have one file by host, it
will be easier to manage in the future. So create a file with the name of your server.

Under Linux:

390 Chapter 13. How to monitor ...

Shinken Documentation, Release 2.4

linux:~ # vi /etc/shinken/hosts/printer-1.cfg

Or Windows:

c:\ wordpad c:\shinken\etc\hosts\printer-1.cfg

You need to add a new host definition for the Linux machine that you’re going to monitor. Just copy/paste the above
definition Change the “host_name”, and “address” fields to appropriate values for this machine.

define host{
use printer
host_name printer-1
address 192.160.0.1

}

* The use printer is the "template" line. It mean that this host will **inherits** properties from the printer template.

* the host_name is the object name of your host. It must be **unique**.

* the address is the network address of your printer. It can be a FQDN or an IP.

What is checked with a printer template?

At this point, you configure your host to be checked with a printer template. What does it means? It means that you
got some checks already configured for you:

• printer check each 5 minutes: check with a ping that the printer is UP

Note: TODO: fill what is checked with HPJD

13.15.6 Restarting Shinken

You’re done with modifying the Shinken configuration, so you will need to verify your configuration files and restart
Shinken.

If the verification process produces any errors messages, fix your configuration file before continuing. Make sure that
you don’t (re)start Shinken until the verification process completes without any errors!

13.16 Monitoring Publicly Available Services

Abstract

This document describes how you can monitor publicly available services, applications and protocols. By “public” I
mean services that are accessible across the network - either the local network or Internet. Examples of public services
include “HTTP”, “POP3”, “IMAP”, “FTP”, and “SSH”. There are many more public services that you probably use
on a daily basis. These services and applications, as well as their underlying protocols, can usually be monitored by
Shinken without any special access requirements.

13.16.1 Introduction

Private services, in contrast, cannot be monitored with Shinken without an intermediary agent of some kind. Examples
of private services associated with hosts are things like CPU load, memory usage, disk usage, current user count,
process information, etc.

13.16. Monitoring Publicly Available Services 391

Shinken Documentation, Release 2.4

These instructions assume that you’ve installed Shinken according to the Installation tutorial. The sample configura-
tion entries below reference objects that are defined in the sample config files (“commands.cfg”, “templates.cfg”, etc.)
that are installed if you followed the quickstart.

13.16.2 Plugins For Monitoring Services

When you find yourself needing to monitor a particular application, service, or protocol, chances are good that a plugin
exists to monitor it. The official Nagios/Shinken plugins distribution comes with plugins that can be used to monitor
a variety of services and protocols. There are also a large number of contributed plugins that can be found in the
“contrib/” subdirectory of the plugin distribution. The Monitoringexchange.org website hosts a number of additional
plugins that have been written by users, so check it out when you have a chance.

If you don’t happen to find an appropriate plugin for monitoring what you need, you can always write your own.
Plugins are easy to write, so don’t let this thought scare you off. Read the documentation on developing plugins for
more information.

I’ll walk you through monitoring some basic services that you’ll probably use sooner or later. Each of these services
can be monitored using one of the plugins that gets installed as part of the Nagios/Shinken plugins distribution. Let’s
get started...

13.16.3 The host definition

Before you can monitor a service, you first need to define a host that is associated with the service. If you follow the
windows/linux/printer monitoring tutorial, you should be familiar with the process of creating a host and linking your
services to it.

For this example, lets say you want to monitor a variety of services on a remote windows host. Let’s call that host
srv-win-1. The host definition can be placed in its own file. Here’s what the host definition for remotehost might look
like if you followed the windows monitoring tutorial:

define host{
use windows
host_name srv-win-1
address srv-win-1.mydomain.com

}

13.16.4 Classic services definition with templates

For classic services like HTTP(s) or FTP, there are some ready to run template that you can use. The full service
definition is explained in another tutorial Services definitions.

The idea here is just to tag your host with what it is providing as network services and automatically get some default
checks like Http or Ftp ones.

13.16.5 Monitoring HTTP

Chances are you’re going to want to monitor web servers at some point - either yours or someone else’s. The
check_http plugin is designed to do just that. It understands the “HTTP” protocol and can monitor response time,
error codes, strings in the returned HTML, server certificates, and much more.

There is already a http template for your host that will create for you a Http service. All you need is to add this template
on your host, with a comma for separating templates.

So you host definition will now look like:

392 Chapter 13. How to monitor ...

https://www.monitoringexchange.org/

Shinken Documentation, Release 2.4

define host{
use windows,http
host_name srv-win-1
address srv-win-1.mydomain.com

}

Note: TODO: write some custom macros for other page check or timeout

It will create a Http service that will look for the “/” page running on srv-win-1. It will produce alerts if the web server
doesn’t respond within 10 seconds or if it returns “HTTP” errors codes (403, 404, etc.). That’s all you need for basic
monitoring. Pretty simple, huh?

13.16.6 Monitoring HTTPS

We got more an more HTTPS services. You will basically check two things: page accessibility and certificates.

There is already a https template for your host that will create for you a Https and a HttpsCertificate services. The
Https check is like the Http one, but on the SSL port. The HttpsCertificate will look for the expiration of the certificate,
and will warn you 30 days before the end of the certificate, and raise a critical alert if its expired.

So you host definition will now look like:

define host{
use windows,https
host_name srv-win-1
address srv-win-1.mydomain.com

}

Note: TODO: write some custom macros for other page check or timeout

You can check Http AND Https in the same time, all you need is to se the two templates in the same time:

define host{
use windows,http,https
host_name srv-win-1
address srv-win-1.mydomain.com

}

13.16.7 Monitoring FTP

When you need to monitor “FTP” servers, you can use the check_ftp plugin. Like for the Http case, there is already a
ftp template that you can use.

define host{
use windows,ftp
host_name srv-win-1
address srv-win-1.mydomain.com

}

This service definition will monitor the “FTP” service and generate alerts if the “FTP” server doesn’t respond within
10 seconds.

13.16. Monitoring Publicly Available Services 393

Shinken Documentation, Release 2.4

13.16.8 Monitoring SSH

When you need to monitor “SSH” servers, you can use the check_ssh plugin.

define host{
use windows,ssh
host_name srv-win-1
address srv-win-1.mydomain.com

}

Tip: You don’t need to declare the ssh template if you already configure your host with the linux one, the Ssh service
is already configured.

This definition will monitor the “Ssh” service and generate alerts if the “SSH” server doesn’t respond within 10
seconds.

13.16.9 Monitoring SMTP

The check_smtp plugin can be using for monitoring your email servers. You can use the smtp template for you host
to automatically get a Smtp service check.

define host{
use windows,smtp
host_name srv-win-1
address srv-win-1.mydomain.com

}

This service definition will monitor the “Smtp” service and generate alerts if the “SMTP” server doesn’t respond
within 10 seconds.

13.16.10 Monitoring POP3

The check_pop plugin can be using for monitoring the “POP3” service on your email servers. Use the pop3 template
for your host to get automatically a Pop3 service.

define host{
use windows,pop3
host_name srv-win-1
address srv-win-1.mydomain.com

}

This service definition will monitor the “POP3” service and generate alerts if the “POP3” server doesn’t respond
within 10 seconds.

13.16.11 Monitoring IMAP

The check_imap plugin can be using for monitoring “IMAP4” service on your email servers. You can use the imap
template for your host to get an Imap service check.

define host{
use windows,imap
host_name srv-win-1
address srv-win-1.mydomain.com

}

394 Chapter 13. How to monitor ...

Shinken Documentation, Release 2.4

This service definition will monitor the “IMAP4” service and generate alerts if the “IMAP” server doesn’t respond
within 10 seconds.

To get smtp, pop3 and imap service checks, you can just link all theses templates to your host:

define host{
use windows,smtp,pop3,imap
host_name srv-win-1
address srv-win-1.mydomain.com

}

13.16.12 Restarting Shinken

Once you’ve added the new host templates to your object configuration file(s), you’re ready to start monitoring them.
To do this, you’ll need to verify your configuration and restart Shinken.

If the verification process produces any errors messages, fix your configuration file before continuing. Make sure that
you don’t (re)start Shinken until the verification process completes without any errors!

13.17 Monitoring VMware hosts and machines

Abstract

This document describes how you can monitor “private” services and attributes of ESX and VM machines, such as:

• Memory usage

• CPU load

• Disk usage

• Network usage

• etc.

13.17.1 Introduction

In a VMware server we should monitor:

• ESX hosts

• VM started on it

Note: It is a good practice to automatically create dependencies between them so if an ESX goes down, you won’t get
useless notifications about all VMs on it. Consult the tutorial about the vmware arbiter module for more information
on this topic..

For theses checks you will need the check_esx3.pl plugin. .. note:: TODO: write in the setup phase about installing it

Note: TODO: draw a by vSphere check

13.17. Monitoring VMware hosts and machines 395

Shinken Documentation, Release 2.4

13.17.2 Steps

There are some steps you’ll need to follow in order to monitor a new vmware esx/vm machine. They are:

• Create an account on the vsphere console server

• Configure your vsphere server in Shinken

• Create new host definition for monitoring an esx server

• Create new host definition for monitoring a vm machine

• Restart the Shinken daemon

13.17.3 What’s already done for you

To make your life a bit easier, a few configuration tasks have already been done for you:

• Some check_esx_ commands definition has been added to the “commands.cfg” file.

• A VMware ESX host template (called “esx”) has already been created in the “templates.cfg” file. This allows
you to add new host definitions in a simple manner.

• A VMware virtual machine host template (called “vm”) has already been created in the templates.cfg file.

The above-mentioned config files can be found in the ///etc/shinken/// directory (or c:shinkenetc under windows).
You can modify the definitions in these and other definitions to suit your needs better if you’d like. However, I’d
recommend waiting until you’re more familiar with configuring Shinken before doing so. For the time being, just
follow the directions outlined below and you’ll be monitoring your VMware boxes in no time.

Tip: We are supposing here that the esx machine you want to monitor is named srv-esx-1 and the virtual machine is
a windows vm named srv-vm-1. Please change the above lines and commands with the real name of your server of
course.

13.17.4 Create a vSphere account for Shinken

Please ask your VMware administrator to create a Shinken account (can be a windows domain account) and give it
read credential on the vSphere environment (on the root datacenter definition with inheritance).

13.17.5 Setup the vSphere console server connection

You need to configure in the “resource.cfg” file (“/etc/shinken/resource.cfg” under linux or
“c:\shinken\etc\resource.cfg” under windows):

• the VSPHERE host connection

• the login for the connection

• the password

vSphere (ESX) part
$VCENTER$=vcenter.mydomain.com
$VCENTERLOGIN$=someuser
$VCENTERPASSWORD$=somepassowrd

You can then try the connection if you already know about an esx host, like for example myesx:

396 Chapter 13. How to monitor ...

Shinken Documentation, Release 2.4

/var/lib/nagios/plugins/check_esx3.pl -D vcenter.mydomain.com -H myesx -u someuser -p somepassword -l cpu

Deploy the public keys on the linux host

When you got the public/private keys, you can deploy the public key to you linux servers.

ssh-copy-id -i /home/shinken/.ssh/id_rsa.pub shinken@srv-lin-1

Tip: Change srv-lin-1 with the name of your server.

Test the connection

To see if the keys are working, just launch:

check_by_ssh -H srv-lin-1 -C uptime

It should give you the uptime of the srv-lin-1 machine.

13.17.6 Declare your new host in Shinken

Now it’s time to define some object definitions in your Shinken configuration files in order to monitor the new Linux
machine.

You can add the new host definition in an existing configuration file, but it’s a good idea to have one file by host, it
will be easier to manage in the future. So create a file with the name of your server.

Under Linux:

linux:~ # vi /etc/shinken/hosts/srv-lin-1.cfg

Or Windows:

c:\ wordpad c:\shinken\etc\hosts\srv-lin-1.cfg

You need to add a new host definition for the Linux machine that you’re going to monitor. Just copy/paste the above
definition Change the “host_name”, and “address” fields to appropriate values for this machine.

define host{
use esx
host_name srv-lin-1
address srv-lin-1.mydomain.com

}

* The use linux is the "template" line. It mean that this host will **inherits** properties from the linux template.

* the host_name is the object name of your host. It must be **unique**.

* the address is the network address of your linux server.

What is supervised by the linux template?

You have configured your host to the checks defined from the linux template. What does this mean? It means that you
have some checks pre-configured for you:

• host check each 5 minutes: check with a ping that the server is UP

13.17. Monitoring VMware hosts and machines 397

Shinken Documentation, Release 2.4

• check disk space

• check if ntpd is started

• check load average

• check physical memory and swap usage

• check for a recent (less than one hour) reboot

13.17.7 Restarting Shinken

You’re done with modifying the configuration, so you’ll need to verify your configuration files and restart Shinken.

If the verification process produces any errors messages, fix your configuration file before continuing. Make sure that
you don’t (re)start Shinken until the verification process completes without any errors!

13.18 Monitoring Windows devices

Abstract

This document describes how you can monitor devices running Microsoft Windows using a predefined template. This
template can address:

• Memory usage

• CPU load

• Disk usage

• Service states

• Running processes

• Event logs (Application or system)

• etc.

13.18.1 Introduction

Publicly available services that are provided by Windows machines (“HTTP”, “FTP”, “POP3”, etc.) can be monitored
by following the documentation on Monitoring publicly available services (HTTP, FTP, SSH, etc.).

The instructions assume that you’ve installed Shinken according to the Installation tutorial. The sample configuration
entries below reference objects that are defined in the sample config files (“commands.cfg”, “templates.cfg”, etc.) that
were installed.

13.18.2 Overview

Monitoring a windows device is possible using two different methods:

• Agent based: by installing software installed on the server, such as NSClient++

• Agentless: by polling directly Windows via the network using the WMI protocol

This document focuses on the agentless method. The agent based method is described in windows monitoring with
nsclient++.

398 Chapter 13. How to monitor ...

Shinken Documentation, Release 2.4

13.18.3 Prerequisites

Have a valid account on the Microsoft Windows device (local or domain account) you will monitor using WMI queries.

13.18.4 Steps

There are several steps you’ll need to follow in order to monitor a Microsoft Windows device.

• Install check_wmi_plus plugin on the server running your poller daemons

• Setup an account on the monitored windows server for the WMI queries

• Declare your windows host in the configuration

• Restart the Shinken Arbiter

13.18.5 What’s Already Been Done For You

To make your life a bit easier, configuration templates are provided as a starting point:

• A selection of check_windows based command definitions have been added to the “commands.cfg” file. This
allows you to use the check_wmi_plus plugin.

• A Windows host template (called “windows”) is included the “templates.cfg” file. This allows you to add new
Windows host definitions in a simple manner.

The above-mentioned config files can be found in the /etc/shinken/packs/os/windows/ directory. You can modify the
definitions in these and other templates to suit your needs. However, wait until you’re more familiar with Shinken
before doing so. For the time being, just follow the directions outlined below and you will be monitoring your
Windows devices in no time.

13.18.6 Setup the check_wmi_plus plugin

The plugin used for windows agent less monitoring is check_wmi_plus. Download the last version of check_wmi_plus
available on the Check WMI Plus website

13.18.7 Setup a windows account for WMI queries

TODO: write on using less than server admin

You need to configure your user account int the /etc/shinken/resources.cfg file or the c:shinkenetcresource.cfg file
under windows with the one you just configured:

$DOMAINUSER$=shinken_user
$DOMAINPASSWORD$=superpassword

Tip: You can also consult the Nagios documentation which provides a very helpful write up on setting up the domain
account and assigning permissions. Monitoring_Windows_Using_WMI.pdf

13.18. Monitoring Windows devices 399

http://assets.nagios.com/
http://assets.nagios.com/downloads/nagiosxi/docs/Monitoring_Windows_Using_WMI.pdf

Shinken Documentation, Release 2.4

13.18.8 Declare your host in Shinken

Now it’s time to define some object definitions in your Shinken configuration files in order to monitor the new Windows
device.

We will assume that your server is named srv-win-1. Replace this with the real hostname of your server.

You can add the new host definition in an existing configuration file, but it is good practice to have one file per host, it
will be easier to manage in the future. So create a file with the name of your server.

Under Linux:

linux:~ # vi /etc/shinken/hosts/srv-win-1.cfg

Or Windows:

c:\ wordpad c:\shinken\etc\hosts\srv-win-1.cfg

You need to add a new host definition for the Windows device that you will monitor. Just copy/paste the above
definition, change the “host_name”, and “address” fields to appropriate values.

define host{
use windows
host_name srv-win-1
address srv-win-1.mydomain.com

}

* use windows is the "template" line. This host will **inherit** properties from the "windows" template.

* host_name is the object name of your host. It must be **unique**.

* address is the ip address or hostname of your host (FQDN or just the host portion).

Note: If you use a hostname be aware that you will have a DNS dependency in your monitoring system. Either have
a periodically updated local hosts file with all relevant entries, long name resolution caching on your host or use an IP
address.

What is monitored by the windows template?

You have configured your host to be checked by the windows template. What does it means? It means that you
Shinken will monitor the following :

• host check each 5 minutes with a ping

• check disk space

• check if autostarting services are started

• check CPU load (total and each CPU)

• check memory and swap usage

• check for a recent (less than one hour) reboot

• critical/warnings errors in the application and system event logs

• too many inactive RDP sessions

• processes hogging the CPU

400 Chapter 13. How to monitor ...

Shinken Documentation, Release 2.4

13.18.9 Restarting Shinken

You’re done with modifying the Shinken configuration, so you’ll need to verify your configuration files and restart
Shinken.

If the verification process produces any errors messages, fix your configuration file before continuing. Make sure that
you don’t (re)start Shinken until the verification process completes without any errors!

13.19 Monitoring Windows devices via NSClient++

13.19.1 Guideline

Here we will focus here on the windows monitoring with an agent, NSClient++.

It can be get at NSClient++ addon on the Windows machine and using the check_nt plugin to communicate with
the NSClient++ addon. The check_nt plugin should already be installed on the Shinken server if you followed the
quickstart guide.

Tip: There are others agent like NC_Net but for the sake of simplicity, we will cover only nsclient++, the most
complete and active one

13.19.2 Steps

There are several steps you’ll need to follow in order to monitor a new Windows machine. They are:

• Install a monitoring agent on the Windows machine

• Create new host and add it the nsclient template for monitoring the Windows machine

• Restart the Shinken daemon

13.19.3 What’s Already Done For You

To make your life a bit easier, a few configuration tasks have already been done for you:

• Some check_nt based commands definition has been added to the “commands.cfg” file. This allows you to use
the check_nt plugin to monitor Window services.

• A Windows host template (called “windows”) has already been created in the “templates.cfg” file. This allows
you to add new Windows host definitions in a simple manner.

The above-mentioned config files can be found in the “/etc/shinken/” directory. You can modify the definitions in
these and other definitions to suit your needs better if you’d like. However, I’d recommend waiting until you’re more
familiar with configuring Shinken before doing so. For the time being, just follow the directions outlined below and
you’ll be monitoring your Windows boxes in no time.

13.19.4 Installing the Windows Agent

Before you can begin monitoring private services and attributes of Windows machines, you’ll need to in-
stall an agent on those machines. I recommend using the NSClient++ addon, which can be found at
http://sourceforge.net/projects/nscplus. These instructions will take you through a basic installation of the NSClient++
addon, as well as the configuration of Shinken for monitoring the Windows machine.

13.19. Monitoring Windows devices via NSClient++ 401

http://sourceforge.net/projects/nscplus
http://sourceforge.net/projects/nc-net
http://sourceforge.net/projects/nscplus

Shinken Documentation, Release 2.4

• Download the latest stable version of the NSClient++ addon from http://sourceforge.net/projects/nscplus

• Unzip the NSClient++ files into a new C:NSClient++ directory

• Open a command prompt and change to the C:NSClient++ directory

• Register the NSClient++ system service with the following command (as an administrator):

cd C:\NSClient++
nsclient++ /install

You can install the NSClient++ systray with the following command (‘SysTray’ is case-sensitive):

nsclient++ SysTray

Open the services manager and make sure the NSClientpp service is allowed to interact with the desktop (see the ‘Log
On’ tab of the services manager). If it isn’t already allowed to interact with the desktop, check the box to allow it to.

Edit the “NSC.INI file” (located in the “C:NSClient++” directory) and make the following changes:

• Uncomment all the modules listed in the [modules] section, except for “CheckWMI.dll” and “RemoteConfigu-
ration.dll”

• Optionally require a password for clients by changing the “password” option in the [Settings] section.

• Uncomment the “allowed_hosts” option in the [Settings] section. Add the IP address of the Shinken server (or
you pollers serbers for a multi-host setup) to this line, or leave it blank to allow all hosts to connect.

• Make sure the “port” option in the [NSClient] section is uncommented and set to ‘12489’ (the default port).

Start the NSClient++ service with the following command:

402 Chapter 13. How to monitor ...

http://sourceforge.net/projects/nscplus

Shinken Documentation, Release 2.4

C:\> nsclient++ /start

If installed properly, a new icon should appear in your system tray. It will be a yellow circle with a black ‘M’ inside.
Success! The Windows server can now be added to the Shinken monitoring configuration...

13.19.5 Declare your new host in Shinken

Now it’s time to define some object definitions in your Shinken configuration files in order to monitor the new Windows
machine.

We will suppose here that your server is named srv-win-1. Of course change this name with the real name of your
server.

You can add the new host definition in an existing configuration file, but it’s a good idea to have one file by host, it
will be easier to manage in the future. So create a file with the name of your server.

Under Linux:

linux:~ # vi /etc/shinken/hosts/srv-win-1.cfg

Or Windows:

c:\ wordpad c:\shinken\etc\hosts\srv-win-1.cfg

You need to add a new host definition for the Windows machine that you’re going to monitor. Just copy/paste the
above definition Change the “host_name”, and “address” fields to appropriate values for the Windows box.

define host{
use windows,nsclient++
host_name srv-win-1
address srv-win-1.mydomain.com

}

* The use windows and nsclient++ templates in the "use" line. It mean that this host will **inherits** properties from the windows and nsclient++ templates.

* the host_name is the object name of your host. It must be **unique**.

* the address is ... the network address of your host :)

What is checked with a windows template?

At this point, you configure your host to be checked with a windows template. What does it means? It means that you
got some checks already configured for you:

• host check each 5 minutes: check if the RDP port is open or not.

• check disk spaces

• check if autostarting services are started

• check CPU load

• check memory and swap usage

• check for a recent (less than one hour) reboot

13.19. Monitoring Windows devices via NSClient++ 403

Shinken Documentation, Release 2.4

13.20 Monitoring Windows devices via WMI

The premier WMI check program, check_wmi_plus.pl, can now be used on the windows platform in association with
the shinken WMIC.EXE.

WMIC.EXE is not the native wmic of the windows system. It is a standalone program created to have the same
input/output as the linux WMIC. This permits check_wmi_plus to use WMIC on windows with the same options as
the linux program. WMIC.EXE (binaries and sources) are included with Shinken (1.2.2 and newer).

WMIC.EXE and associated Shinken programs under Windows, use the .NET framework 2.0.

13.20.1 Pre-requisites for using check_wmi_plus.pl

Check_wmi_plus.pl needs a perl interpreter to work, we recommend activePerl. At this time, strawberry perl cannot
be used as a non interactive program. The Shinken poller starts programs in a non interactive mode, which means no
Strawberrt perl.

• Download activeperl and select the 5.16.x Windows x64 version

• Download and install PERL Number::Format using CPAN

• Download and install PERL Config::Inifiles using CPAN

• Download and install PERL DataTime using CPAN

• Download and install .NET 2.0 framework from Microsoft (If it is not already installed). On Windows 2008 R2,
install 3.5 (SP1) Framework. It includes the 2.0 version.

Important: PERL Dependencies for check_wmi_plus.pl (needed by check_wmi_plus and not installed by default.
Please lookup the CPAN documentation if you don”t know how to install PERL modules)

After having installed all dependencies, you can now proceed to install check_wmi_plus.pl

• Download and install check_wmi_plus.pl

Make sure to change the references into the check_wmi_plus.conf file and the initial variables into the
check_wmi_plus.pl (take a look to match the install folder and the WMIC.exe path)

13.20.2 Shinken configuration to use check_wmi_plus

At first you must configure monitoring parameters in the Shinken etc/resource.cfg file :

$DOMAIN$=domain
$DOMAINUSERSHORT$=shinken_user
$DOMAINUSER$=$DOMAIN$\\$DOMAINUSERSHORT$
$DOMAINPASSWORD$=superpassword
$LDAPBASE$=dc=eu,dc=society,dc=com

These options are set by default, but the poller will also use a « hidden » $DOMAINUSERSHORT$ parameter set in
the Shinken templates.cfg. Just set this parameter in the resource.cfg file to overload the template and make use of a
single configuration file.

These options are used by the check_wmi_plus plugin as credentials for WMI local or remote access. If you intend to
monitor hosts that are not controlled by a domain controller (simple workgroup members) it is necessary to overload
the $DOMAINUSER$ parameter :

404 Chapter 13. How to monitor ...

http://www.edcint.co.nz/checkwmiplus/
http://www.activestate.com/activeperl/downloads
http://www.edcint.co.nz/checkwmiplus/

Shinken Documentation, Release 2.4

$DOMAIN$=domain
$DOMAINUSERSHORT$=shinken_user
$DOMAINUSER$=$DOMAINUSERSHORT$
$DOMAINPASSWORD$=superpassword
$LDAPBASE$=dc=eu,dc=society,dc=com

You need to set the appropriate values for your environment, the above values (domain, shinken_user and
superpassword) are simply examples. :-)

To test the settings, just add a host to be monitored by setting a new host in a cfg file named with the name of the host
for example etchostsclishinken.cfg based on the windows template:

define host{
use windows
contact_groups admins
host_name clishinken
address clishinken
icon_set server

}

Restart the Shinken windows services. The WebUI now checks a new windows host : clishinken ! In this configuration,
the remote WMI is executed using the credentials set into the resource.cfg file. It”s working but is not really secure.

Warning: warning
If you look in the local configuration you will see check_wmi_plus. For Windows, it’s not allowed to use creden-
tials for a local WMI request. As a workaround, WMIC.EXE will use the local credentials if the target host is set
to localhost and the user is set to local. Check the etccommands-windows.cfg to see how it works. You will see
something like this :

define command {
command_name check_local_disks
command_line $PLUGINSDIR$/check_wmi_plus.pl -H localhost -u "local" -p "local" -m checkdrivesize -a '.' -w 90 -c 95 -o 0 -3 0

}

13.20.3 Secure method to use check_wmi_plus on windows

There is a new option to use check_wmi_plus with shinken : Use the poller configuration service credentials.

For most sysadmins, putting an unencrypted password in a config file is not a best practice. IT secuirty will be
compromised if someone can read the configuration file. The rights of this user on servers are also very high (WMI
requests need more configuration to be security compliant on windows server, including DCOM configuration or
admin rights. . .) You can find a good idea of how to configure the remote wmi on windows here:

www.op5.com/how-to/agentless-monitoring-windows-wmi/

To set a “bypass” credential, only set the $DOMAINUSERSHORT$ to #### (4 sharp symbols without spaces) If the
WMIC see this specific user,it just will use the caller credentials - in all cases the poller service user. By default, the
Shinken services are set to localsystem.

Stop the services (manually or using the binstop_allservices.cmd script).

Open the services.msc (or the server manager, and then the services part)

13.20. Monitoring Windows devices via WMI 405

http://www.op5.com/how-to/agentless-monitoring-windows-wmi/

Shinken Documentation, Release 2.4

double-click on the Shinken poller service

go to the log On tab

406 Chapter 13. How to monitor ...

Shinken Documentation, Release 2.4

check the “This account” radio button and set the Shinken user account (the same as you set the resource.cfg file)

As you can see, you never see the password. . . Click on the Apply button (the first time you set an account to logon as
a service, you will see a message box to announce the fact that the account is granted to logon as a service). Change
the resource.cfg file to set the #### as the domainusershort and put a wrong password to be sure to remove the old
credentials. Save the resource.cfg file.

Restart the services (manually or using the binstart_allservices.cmd)

13.20. Monitoring Windows devices via WMI 407

Shinken Documentation, Release 2.4

The poller will now launch the WMI request under its own service account. . .

Important: Setting the remote WMI configuration on windows is not as easy as it seems.

The domains admins or other IT admins may set GPO or other tools to change the configuration of the system -
including the right to enable or disable remote WMI. Please be patient, and change options one by one if your wmi
tests are not working.

408 Chapter 13. How to monitor ...

CHAPTER 14

How to contribute

409

Shinken Documentation, Release 2.4

14.1 Shinken packs

14.1.1 What are Packs?

Packs are a small subset of configuration files, templates or pictures about a subject, like Linux or Windows. It’s
designed to be a “pack” about how to monitor a specific subject. Everyone can contribute by creating and sending
their how packs to the Shinken community website.

Technically, it’s a zip file with configuration files and some pictures or templates in it.

Let take a simple example with a linux pack, with CPU/Memory/Disk checks via SNMP. Files between [] are optional.

• pack/templates.cfg -> Define the host template for the “linux-snmp” tag

• pack/commands.cfg -> Define commands for getting service states

• [pack/discovery.cfg] -> If you got a discovery rule for a “linux-snmp” (like a nmap based one), you can add it

• [etc/resource.d/snmp.cfg] -> Resource file, in this example it can be provide default (global) macros $SNMP-
COMMUNITY$

• package.json -> json file that describe your pack

• services/cpu.cfg -> Your CPU services. They must apply to the “linux-snmp” host tag!

• services/memory.cfg -> Your Memory services, the same.

• [libexec/check_snmp_mem.pl] -> Script for execute checks. If script not stable or need to be compiled, you may
be don’t wanted include this to pack. Best way - place link for download it into file commands.cfg

• [images/sets/tag.png] -> If you want to put a linux logo for all linux host tagged host, it’s here. (size = 40x40px,
in png format)

• [templates/pnp/check_cpu.php] -> If your check_cpu command got a PNP4 template

• [templates/graphite/check_cpu.graph] -> Same, but for graphite

14.1.2 What does a package.json looks like?

It’s a json file that describe your “pack”. It will give it its name, where it should be installed, and if need give some
macros provided by the host tags.

Let use our linux-smnp sample:

{
"name": "linux-snmp",
"types": ["pack"],
"version": "1.4",
"homepage": "https://github.com/shinken-monitoring/pack-linux-snmp",
"author": "Jean Gabès",
"description": "Linux checks based on SNMP",
"contributors": [
{
"name": "Jean Gabès",
"email": "naparuba@gmail.com"
},
{
"name": "David Moreau Simard",
"email": "moi@dmsimard.com"
}
],

410 Chapter 14. How to contribute

http://shinken.io

Shinken Documentation, Release 2.4

"repository": "https://github.com/shinken-monitoring/pack-linux-snmp",
"keywords": [

"pack",
"linux",
"snmp"

],
"dependencies": {

"shinken": ">=1.4"
},
"license": "AGPL"

}

* name -> The name of your pack. Directory with this name will be created on your /etc/shinken/packs

* types -> Can be pack or module

* version -> Pretty simple, the version of pack

* homepage -> Homepage of pack, is usual a github repo

* author -> Maintainer of package

* contributors -> People, who makes changes in this package

* repository -> Repo with source code

* keywords -> Help for search via shinken CLI or shinken.io website

* dependencies -> Describe versions of software need to all works okay. Can provide any strings, besides shinken version

14.1.3 How to share the zip pack to the community website?

The community website is available at shinken.io. You will need an account to share your zip packs or retrive some
new from others community members. After register put your API key from shinken.io/~ to ~/shinken.ini file.

Now you can push packages:

cd my-package
shinken publish

After 5 minutes you can see your new or updated package on shinken.io main page.

14.2 Shinken modules

14.2.1 Packages layout

For a MODULE named ABC (ex: github.com/shinken-monitoring/mod-ip-tag)

• etc/modules/abc.cfg

• module/module.py

• /__init__.py

• package.json

That”s ALL!

14.2.2 The package.json file

The package.json is like this:

14.2. Shinken modules 411

http://shinken.io
http://shinken.io/~
http://shinken.io
https://github.com/shinken-monitoring/mod-ip-tag

Shinken Documentation, Release 2.4

{
"name": "ip-tag",
"types": ["module"],
"version": "1.4.1",
"homepage": "http://github.com/shinken-monitoring/mod-ip-tag",
"author": "Jean Gabès",
"description": "Tag host by their IP ranges",
"contributors": [
{
"name": "Jean Gabès",
"email": "naparuba@gmail.com"

}
],
"repository": "https://github.com/shinken-monitoring/mod-ip-tag",
"keywords": [
"module",
"arbiter",
"ip"
],
"dependencies": {

"shinken": ">=1.4"
},
"license": "AGPL"

}

14.2.3 How to publish it

Before publishing, you must register an account on shinken.io. Then on your account page on shinken.io/~ you will
got your api_key. Put it on your ~/.shinken.ini.

Then you can :

cd my-package
shinken publish

That’s all :)

14.3 Getting Help and Ways to Contribute

14.3.1 Shinken resources for users (help) :

• Shinken documentation

• Shinken Troubleshooting FAQ

• Support Forums

• Shinken issues and bug reports

• Shinken Ideas

The documentation wiki contains a Getting started section for how-to and tutorial related information. It also hosts
an official documentation that has the full in-depth details and a how to contribute section where you can learn how to
help grow Shinken.

412 Chapter 14. How to contribute

http://shinken.io
http://shinken.io/~
http://shinken.readthedocs.org/
http://forum.shinken-monitoring.org/
https://github.com/naparuba/shinken/issues?sort=created&direction=desc&state=open
http://shinken.ideascale.com/

Shinken Documentation, Release 2.4

Your input and support is a precious resource. If the documentation is not clear, or you need help finding that nugget
of information, the support forum has the answer to your burning questions. The Shinken Ideas page is a good place
to let the development team how Shinken can improve to meet new challenges or better serve its user base.

14.3.2 Ways to contribute :

• help on the documentation Shinken documentation

• help on updating this web site

• help on tracking and fixing bugs, Shinken is on github to make it easy!

• coding new features, modules and test cases

• performance profiling of the various daemons, interfaces and modules

• providing references for large installations

• submitting ideas to Shinken Ideas

• responding to questions on the forums

Tip: Guidelines and resources are described for users in the first section and power users and developers in the second
section.

14.3.3 Shinken Guidelines for developers and power users :

Guidelines that should be followed when contributing to the code

• Guidelines - Hacking the code [Examples of Shinken programming]

• Guidelines - How to add a new WebUI page

• Guidelines - Test driven development [How to create and run tests]

• Guidelines - Programming rules [Style, technical debt, logging]

• Informational - Feature planning process and release cycle

Resources for developers and power users

• Development - Collaborative code repository on Shinken github

• Development - Bug tracking on Shinken github

• Development - Automated test and integration on Shinken Jenkins server

• Development - The forums are also a good medium to discuss issues Support Forums

• Development - Developer Mailing list - Register or search the shinken-devel Mailing list

For bug hunting and programming, you will need to look at the “How to hacking” tutorial page.

GitHub offers great facilities to fork, test, commit, review and comment anything related to Shinken. You can also
follow the projects progress in real time.

There is a development mailing list where you can join us. Come and let us know what you think about Shinken,
propose your help or ask for it. :)

Thank you for your help in making this software an open source success.

14.3. Getting Help and Ways to Contribute 413

http://shinken.readthedocs.org/
https://github.com/naparuba/shinken
https://github.com/naparuba/shinken/issues?sort=created&direction=desc&state=open
https://github.com/naparuba/shinken/issues?sort=created&direction=desc&state=open
https://test.savoirfairelinux.com/view/Shinken/
http://forum.shinken-monitoring.org/
https://lists.sourceforge.net/lists/listinfo/shinken-devel

Shinken Documentation, Release 2.4

14.4 Shinken Package Manager

Important: I don’t now how you get here :) it’s a poc of the design of a shinken pack manager. A pack can be a
module, a configuration pack or what ever you want.

A pack can be about :

• configuration

• module

Each pack should have a pack.json file that describe it.

{
"name": "linux",
"version": "1.2",
"description": "Standard linux checks, like CPU, RAM and disk space. Checks are done by SNMP.",
"type": "configuration",
"dependencies": {

"shinken" : ">1.2"
},
"repository": {

"type": "git",
"url": "git://github.com/naparuba/pack-cfg-linux.git"

},
"keywords": [

"linux", "snmp"
],
"author": "Jean Gabès <naparuba@gmail.com>",
"license": "Affero GPLv3",
"configuration":{

"path":"os/",
"macros":{

"_SNMPCOMMUNITY": {
"type":"string",
"description":"The read snmp community allowed on the linux server"

},
}

}
}

And for a module one :

{
"name": "logstore_mongodb",
"version": "1.2",
"description": "Log store module for LiveStatus. Will save the logs into Mongodb.",
"type": "module",
"dependencies": {

"shinken" : ">1.2",
"livestatus" : ">1.2"

},
"repository": {

"type": "git",
"url": "git://github.com/naparuba/pack-module-logstore_mongodb.git"

},
"keywords": [

"mongodb", "log", "livestatus"
],

414 Chapter 14. How to contribute

Shinken Documentation, Release 2.4

"author": "Gerhard Lausser <>",
"license": "Affero GPLv3"

}

The spm command should be really simple to use.

:: spm install linux

This will download the linux pack and put the good files into the rigth place.

:: spm search linux

This will output all the pack with linux in the name or the description.

spm create

This will create a .tar.gz file with all inside.

spm publish

This will push the .tar.gz file to the registry.shinken-montioring.org website. Will use the ~/.spm/api.key for creden-
tials.

spm adduser

This will try to register you to the registry website. If the username you propose is already defined, propose you to
login and get your API key.

14.4. Shinken Package Manager 415

Shinken Documentation, Release 2.4

416 Chapter 14. How to contribute

CHAPTER 15

Development

417

Shinken Documentation, Release 2.4

15.1 Shinken Programming Guidelines

The Shinken project aims to have good code quality. This is to the benefit of all. Easy to understand code, that is
efficient and well documented can do wonders to introduce new developers to a great system and keep existing one
happy!

During scores of secret meetings at undisclosed locations in the heart of Eurodisney, the following guidelines were
documented.

So here’s the how to keep the developers happy! __Follow these guidelines__

15.1.1 The python style guide

The python style guide provides coding conventions for Python programmers covering topics such as:

• Whitespace

• Comments

• Imports

• Classes

• Naming conventions

Keep it as a handy reference: PEP8 - Python Style guide. We use a relaxed version of PEP 8 with a maximum line
length of 100 instead of 79 and error 303 (too many blank lines) ignored.

15.1.2 Reference book

The Art of Readable Code, is a great book that provides a fast read and an immense value in improving the readability
and maintainability of code.

15.1.3 The python docstring guide

The Python docstring guide provides insight in how to format and declare docstrings which are used to document
classes and functions.

Read through it to provide better understanding for yourself and others: ‘ Python docstring guide‘_

15.1.4 Logging is your friend

Shinken provides a logger module, that acts as a wrapper to the Python logging facilities. This provides valuable
feedback to users, power users and developers.

The logging functions also provide different levels to distinguish the type logging level at which the messages should
appear. This is similar to how syslog classifies messages based on severity levels.

Some log messages will not get the level printed, these are related to state data. Logging levels for logs generated
at system startup and displayed in STDOUT are set by default to display all messages. This is normal behaviour.
Once logging is initialized buffered messages are logged to the appropriate level defined in the daemon INI files. (ex.
reactionnerd.ini, brokerd.ini, etc.)

Some test cases depend on logging output, so change existing logging messages to your hearts content, but validate all
changes against the FULL test suite. Learn more about using the Shinken test suite.

418 Chapter 15. Development

Shinken Documentation, Release 2.4

Debug: This is the most verbose logging level (maximum volume setting). Consider Debug to be out-of-bounds for
a production system and used it only for development and testing. I prefer to aim to get my logging levels just
right so I have just enough information and endeavor to log this at the Information level or above.

Information: The Information level is typically used to output information that is useful to the running and manage-
ment of your system. Information would also be the level used to log Entry and Exit points in key areas of your
application. However, you may choose to add more entry and exit points at Debug level for more granularity
during development and testing.

Warning: Warning is often used for handled ‘exceptions’ or other important log events. For example, if your appli-
cation requires a configuration setting but has a default in case the setting is missing, then the Warning level
should be used to log the missing configuration setting.

Error: Error is used to log all unhandled exceptions. This is typically logged inside a catch block at the boundary of
your application.

Critical: Critical is reserved for special exceptions/conditions where it is imperative that you can quickly pick out
these events. I normally wouldn’t expect Fatal to be used early in an application’s development. It’s usually
only with experience I can identify situations worthy of the FATAL moniker experience do specific events
become worth of promotion to Critical. After all, an error’s an error.

Log: This level has been deprecated for NON NAGIOS/SHINKEN STATE messages and should be replaced with one
of the approved logging levels listed above. The STATE messages are easy recognize as they are ALL CAPS.
Do not mess with these unless you know what you are doing.

15.1.5 Technical debt must be paid

Coding in Shinken should be fun and rewarding.

“Technical debt”: all little hacks here and there. __There comes a time, technical debt must be paid__. We can have
new features very quickly, if authors do not have to bypass numerous hack. We must take some time before each
release to pay all technical debt we can. __The less we’ve got, the easier it is to service and extend the code__.

It’s the same for the core architecture. A solid and stable architecture allows developers to build on it and add value.
A good example is being able to add a parameter with only a single line :)

We must be responsible with new features, if it means they can be used to build more innovation in the future without
hacks :)

15.1.6 Where does the fun happen

‘ GitHub offers great facilities to fork, test, commit, review and comment anything related to Shinken‘_.

You can also follow the project progress in real time.

15.2 Test Driven Development

15.2.1 Introduction

Test Driven Development

In a strict sense TDD is:

• Create the test case for your new function (valid and invalid input, limits, expected output)

• Run the test, make sure it fails as planned.

15.2. Test Driven Development 419

Shinken Documentation, Release 2.4

• Code your function, run the test against it and eventually have it succeed.

• Once the function works, re-factor the code for efficiency, readability, comments, logging and anything else
required.

• Any scope changes should be handled by new functions, by adding new test cases or by modifying the existing
test case (dangerous for existing code).

• See the ‘ Wikipedia article about TDD‘_ for more information.

There are different test levels :

• Commit level tests : These should be as quick as possible, so everyone can launch them in a few seconds.

• Integration tests : Integration tests should be more extensive and can have longer execution periods as these are
launched less often (before a release, or in an integration server).

TDD in Shinken

We think all functions and features should have a test case. Shinken has a system to run automated tests that pinpoint
any issues. This is used prior to commit, at regular intervals and when preparing a release.

Shinken uses Test Driven Development to achieve agility and stability in its software development process. Developers
must adhere to the described methods in order to maintain a high quality standard.

We know some functions will be hard to test (databases for example), so let’s do our best, we can’t have 100%
coverage. Tests should cover the various input and expected output of a function. Tests can also cover end-to-end
cases for performance, stability and features. Test can also be classified in their time to run, quick tests for commit
level validation and integration tests that go in-depth.

We are not saying “all patches should be sent with tests”, but new features/functions should have tests. First, the
submitter knows what his code is designed to do, second this will save us from having to create one or more test cases
later on when something gets broken. Test examples can be found in the /tests/ directory of the repository or your local
installation.

15.2.2 Add test to Shinken

I guess you have come here to chew bubblegum and create tests ... and you are all out of bubblegum! Lucky you are,
here is some help to create tests!

Create a test

Tests use standard python tools to run (unittest), so that they have to be well formatted. But don’t worry it’s quite
simple. All you have to know is something (a class or a method) containing the “test” string will be run. The typical
way to create a new test is to copy paste from a simple one. We suggest the test_bad_contact_call.py for example
which is very small.

Here is the file :

from shinken_test import *

class TestConfig(ShinkenTest):

def setUp(self):
self.setup_with_file('etc/nagios_bad_contact_call.cfg')

def test_bad_contact_call(self):
The service got a unknow contact. It should raise an error

420 Chapter 15. Development

Shinken Documentation, Release 2.4

svc = self.conf.services.find_srv_by_name_and_hostname("test_host_0", "test_ok_0")
print "Contacts:", svc.contacts
self.assert_(svc.is_correct() == False)

if __name__ == '__main__':
unittest.main()

Basically what unittest does (and nosetest too) is run every method containing “test” in all class containing “test”.
Here there is only one test : test_bad_contact_call The setUp function is a special one : it is called before every test
method to set up the test. You can also execute a special function after each test by defining a tearDown() method.

So the only thing you have to do is rename the function and write whatever you want to test inside!

This is more or less the only thing you have to do if you want to write a test from scratch. See
http://docs.python.org/2/library/unittest.html for more detail about unittest

If you are testing more complex stuff you may use other test as template. For example broker module tests are a lot
different and need some scheduling statement to simulate real beahvior.

Executing tests

Important: YOU NEED PYTHON 2.7 TO RUN THE TESTS. The test scripts use new Assert statements only
available starting in Python 2.7.

Once you have done or edited the python file you have to run the test by typing :

python test_nameofyourtest.py

If there is no error then everything is correct. You can try to launch it with nosetests to double check it.

Note: nosetests has a different behavior than unittests, the jenkins integration is using nosetests, that’s why it’s a good
thing to check before comminting.

The automated tests permit developers to concentrate on what they do best, while making sure they don’t break
anything. That’s why the tests are critical to the success of the project. Shinken aims for “baseline zero bug” code and
failure by design development :) We all create bugs, it’s the coders life after all, lets at least catch them before they
create havoc for users! The automated tests handle regression, performance, stability, new features and edge cases.

The test is ready for commit. The last thing to do is to run the test suit to ensure you do not create code regression.
This can be a long step if you have made a big change.

Shell test run

There are basically two ways to run the test list. The first one (easiest) is to run the quick_test shell script. This will
basically iterate on a bunch of python files and run them

FIXME : update test list into git and edit end to end script

./quick_tests.sh

Then you can run the end to end one : \ FIXME : explain what the script does

./test_end_to_end.sh

It only takes a few seconds to run and you know that you did not break anything (or this will indicate you should run
the in-depth integration level tests :)).

15.2. Test Driven Development 421

http://docs.python.org/2/library/unittest.html

Shinken Documentation, Release 2.4

If you are adhering to TDD this will validate that your function fails by design or that you have successfully built your
function

Integration test run

The other way to do it is run the new_runtest script (which is run on the Jenkins ingration server)

Note: It can be difficult to make it work from scratch as the script create and install a python virtual enviromnt. On
the distros, pip dependencies may be difficult to met. Don’t give up and ask help on the mailing list!

./test/jenkins/new_runtest ./test/jenkins/shorttests.txt ./test/moduleslist COVERAGE PYLINT PEP8

For short tests, coverage and python checking. Just put NOCOVERAGE or NOPYLINT or NOPEP8 instead to remove
one.

This ensure that the Jenkins run won’t fail. It’s the best way to keep tests fine.

Tests and integration servers

The integration server is at http://shinken-monitoring.de:8080/

It use the following tests:

• test/jenkins/runtests[.bat]

It takes the arguments: “file with a list of test_-scripts” [NO]COVERAGE [NO]PYLINT

• test/test_end_to_end.sh

Other integration server is at https://test.savoirfairelinux.com/view/Shinken/

This one use the new_runtest script.

Automated test execution

The Hudson automated test jobs are:

• Shinken

– executed after each git commit

– runtests test/jenkins/shorttests.txt NOCOVERAGE NOPYLINT

– the scripts in shorttests.txt take a few minutes to run

– give the developer feedback as fast as possible (nobody should git-commit without running tests in his
private environment first)

• Shinken-Multiplatform

– runs 4 times per day

– runtests test/jenkins/longtests.txt NOCOVERAGE NOPYLINT

– linux-python-2.4,linux-python-2.6,linux-python-2.7,windows-python-2.7

– executes _all_ test_-scripts we have, so it takes a long time

• Shinken-End-to-End

– runs after each successful Shinken-Multiplatform

422 Chapter 15. Development

http://shinken-monitoring.de:8080/
https://test.savoirfairelinux.com/view/Shinken/

Shinken Documentation, Release 2.4

– executes the test/test_end_to_end.sh script

– try a direct launch, install then launch, and high availability environment launch.

• Shinken-Code-Quality

– runs once a day

– runtests test/jenkins/longtests.txt COVERAGE PYLINT

– collects metrics for coverage and pylint

On the Jenkins one :

• Shinken-Upstream-Commit-Short-Tests

– executed after each git commit

– ./test/jenkins/new_runtests ./test/jenkins/shorttests.txt ./test/moodulelist COVERAGE PYLINT PEP8

– test also module in a basic way.

– the scripts in shorttests.txt take a few minutes to run

– give the developer feedback as fast as possible (nobody should git-commit without running tests in his
private environment first)

• Shinken-Upstream-Daily-Full-Tests

– executed every 6 hours

– ./test/jenkins/new_runtest ./test/jenkins/all_tests.txt ./test/moduleslist COVERAGE PYLINT PEP8

– the all_test is regenerated every time (all test_*.py)

– run all test in all module listed

– give a full view of shinken coverage.

15.3 Shinken Plugin API

15.3.1 Other Resources

If you’re looking at writing your own plugins for Shinken or Nagios, please make sure to visit these other resources:

• The official Monitoring plugins project website

• The official Monitoring plugins development guidelines

15.3.2 Plugin Overview

Scripts and executables must do two things (at a minimum) in order to function as Shinken plugins:

• Exit with one of several possible return values

• Return at least one line of text output to “STDOUT”

The inner workings of your plugin are unimportant to Shinken, interface between them is important. Your plugin
could check the status of a TCP port, run a database query, check disk free space, or do whatever else it needs to check
something. The details will depend on what needs to be checked - that’s up to you.

15.3. Shinken Plugin API 423

https://www.monitoring-plugins.org
https://www.monitoring-plugins.org/doc/guidelines.html

Shinken Documentation, Release 2.4

If you are interested in having a plugin that is performant to use with Shinken, consider making it a Python or python
+ C type plugin that is daemonized by the Shinken poller or receiver daemons. You can look at the existing poller
daemons for how to create a module, it is very simple.

15.3.3 Return Code

Shinken determines the status of a host or service by evaluating the return code from plugins. The following tables
shows a list of valid return codes, along with their corresponding service or host states.

Plugin Return Code Service State Host State
0 OK UP
1 WARNING UP or DOWN/UNREACHABLE*
2 CRITICAL DOWN/UNREACHABLE
3 UNKNOWN DOWN/UNREACHABLE

If the use_aggressive_host_checking option is enabled, return codes of 1 will result in a host state of DOWN or UN-
REACHABLE. Otherwise return codes of 1 will result in a host state of UP. The process by which Nagios determines
whether or not a host is DOWN or UNREACHABLE is discussed here.

15.3.4 Plugin Output Spec

At a minimum, plugins should return at least one of text output. Beginning with Nagios 3, plugins can optionally
return multiple lines of output. Plugins may also return optional performance data that can be processed by external
applications. The basic format for plugin output is shown below:

TEXT OUTPUT | OPTIONAL PERFDATALONG TEXT LINE 1LONG TEXT LINE 2...LONG TEXT LINE N |
PERFDATA LINE 2PERFDATA LINE 3...PERFDATA LINE N

The performance data is optional. If a plugin returns performance data in its output, it must separate the performance
data from the other text output using a pipe (|) symbol. Additional lines of long text output are also optional.

15.3.5 Plugin Output Examples

Let’s see some examples of possible plugin output...

Case 1: One line of output (text only)

Assume we have a plugin that returns one line of output that looks like this:

DISK OK - free space: / 3326 MB (56%);

If this plugin was used to perform a service check, the entire line of output will be stored in the $SERVICEOUTPUT$
macro.

Case 2: One line of output (text and perfdata)

A plugin can return optional performance data for use by external applications. To do this, the performance data must
be separated from the text output with a pipe (|) symbol like such:

DISK OK - free space: / 3326 MB (56%);

"|"

/=2643MB;5948;5958;0;5968

424 Chapter 15. Development

Shinken Documentation, Release 2.4

If this plugin was used to perform a service check, the”red”portion of output (left of the pipe separator) will be stored
in the $SERVICEOUTPUT$ macro and the”orange”portion of output (right of the pipe separator) will be stored in the
$SERVICEPERFDATA$ macro.

Case 3: Multiple lines of output (text and perfdata)

A plugin optionally return multiple lines of both text output and perfdata, like such:

DISK OK - free space: / 3326 MB (56%);"|"/=2643MB;5948;5958;0;5968/ 15272 MB (77%);/boot 68 MB (69%);/home 69357 MB (27%);/var/log 819 MB (84%);"|"/boot=68MB;88;93;0;98/home=69357MB;253404;253409;0;253414 /var/log=818MB;970;975;0;980

If this plugin was used to perform a service check, the red portion of first line of output (left of the pipe separator) will
be stored in the $SERVICEOUTPUT$ macro. The orange portions of the first and subsequent lines are concatenated
(with spaces) are stored in the $SERVICEPERFDATA$ macro. The blue portions of the 2nd _ 5th lines of output will
be concatenated (with escaped newlines) and stored in $LONGSERVICEOUTPUT$ the macro.

The final contents of each macro are listed below:

Macro Value
$SERVICEOUT-
PUT$

DISK OK - free space: / 3326 MB (56%);

$SERVICEPERF-
DATA$

/=2643MB;5948;5958;0;5968”/boot=68MB;88;93;0;98”/home=69357MB;253404;253409;0;253414”/var/log=818MB;970;975;0;980

$LONGSERVICE-
OUTPUT$

/ 15272 MB (77%);n/boot 68 MB (69%);n/var/log 819 MB (84%);

With regards to multiple lines of output, you have the following options for returning performance data:

• You can choose to return no performance data whatsoever

• You can return performance data on the first line only

• You can return performance data only in subsequent lines (after the first)

• You can return performance data in both the first line and subsequent lines (as shown above)

15.3.6 Plugin Output Length Restrictions

Nagios will only read the first 4 KB of data that a plugin returns. This is done in order to prevent runaway plugins
from dumping megs or gigs of data back to Nagios. This 4 KB output limit is fairly easy to change if you need. Simply
edit the value of the MAX_PLUGIN_OUTPUT_LENGTH definition in the include/nagios.h.in file of the source code
distribution and recompile Nagios. There’s nothing else you need to change!

Shinken behaviour is pretty the same. The parameter can be specified in shinken.cfg. The default value is 8K

15.3.7 Examples

If you’re looking for some example plugins to study, we would recommend that you download the official Monitoring
plugins and look through the code for various C, Perl, and shell script plugins. Information on obtaining the official
Monitoring plugins can be found here.

Otherwise go to the Shinken Github or look in your installation in shinken/modules and look for the NRPE and NSCA
modules for inspiration on create a new poller or receiver daemon module.

15.4 Developing Shinken Daemon Modules

How to develop daemon modules...

15.4. Developing Shinken Daemon Modules 425

Shinken Documentation, Release 2.4

Coming shortly.

15.5 Hacking the Shinken Code

15.5.1 Development goals

Shinken is an open source program.

Enhancements, optimization, fixes, these are all good reasons to create a patch and send it to the development mailing
list. Even if you are not sure about the quality of your patch or your ideas, submit them to the mailing list for review
or comment. Having feedback is essential to any project.

This documentation will show how to add code to Shinken. Shinken is written in Python. If you are new to python
please consider reading this introduction / beginners guide.

15.5.2 Development rules

If you wish to commit code to the Shinken repository, you must strive to follow the Shinken development rules.

Before sending us a Pull Request please consider the following table

Contribution type Run test cases Add a test case Add documentation Do one commit per step
Typo fixing in comments Yes
Typo fixing in code Yes Yes
Bug fixing Yes Yes Yes
New feature Yes Yes Yes Yes

Depending on the contribution you should ensure the previous condition. If you don’t met one of those your pull
request may take some time to be merged or simply be rejected. Ensuring stability is a top priority. Whenever a piece
of code is edit, test should ensure nothing is broken. Documentation is also important, undocumented features are
almost useless.

Please try to stick to that when contributing to Shinken. We will be happy to merge your work.

15.5.3 Best Practices

Note: This was move from the about section. Should be reworked

• “value first priority”

• Major changes are handled in github forks by each developer

• Very open to user submitted patches

• Comprehensive automated QA to enable a fast release cycle without sacrificing stability

• Tagging experimental unfinished features in the documentation

• Release soon and release often mentality

15.5.4 How is Shinken’s code organized

The Shinken code is in the shinken directory. All important source files are :

• bin/shinken-* : source files of daemons

426 Chapter 15. Development

http://wiki.python.org/moin/BeginnersGuide

Shinken Documentation, Release 2.4

• shinken/objects/item.py : base class for nearly all important objects like hosts, services and contacts.

• shinken/*link.py : class used by Arbiter to connect to daemons.

• shinken/modules/*/*py : modules for daemons (like the Broker).

• shinken/objects/schedulingitem.py : base class for host/service that defines all the algorithms for scheduling.

15.5.5 Datadriven programming in Shinken code

A very important thing in Shinken code is the data programming method : instead of hardcoding transformation for
properties, it’s better to have a array (dict in Python) that described all transformations we can use on these properties.

With this method, a developer only needs to add this description, and all transformations will be automatic (like
configuration parsing, inheritance application, etc).

Nearly all important classes have such an array. It’s named “properties” and is attached to the class, not the object
itself.

Global parameters of the application (like the one for nagios.cfg file) are in the properties of the Config class. They
are defined like: ‘enable_notifications’ : {‘required’:False, ‘default’:‘1’, ‘pythonize’: to_bool, ‘class_inherit’ : [(Host,
None), (Service, None), (Contact, None)]},

Here, this property is:

• not required

• It’s default value is 1

• We use the ‘to_bool’ function to transform the string from the configuration file to a Python object

• We put this value in the Host and Service class with the same name (None==keep the name). The string in place
of None, this string is used to access this property from the class.

Specific properties for objects like Hosts or Services are in a properties dict(dictionary), but without the ‘class_inherit’
part. Instead of this, they have the “fill_brok” part. A “brok” is an inter process message. It’s used to know if the
property must be sent in the following brok types:

• full_status : send a full status brok, like at daemon starting.

• check_result : send when a check came back

• next_schedule : send when a new check is scheduled

These classes also have another “properties” like dict : “running_properties”. It’s like the standard one, but for running
only properties (aka no configuration based properties).

15.5.6 Programming with broker modules in Shinken

Modules are pieces of code that are executed by a daemon.

Module configuration and startup is controlled in the modules/*.cfg files

• The module is declared in a daemon

• The module itself is defined and its variables set

A shinken module class must have an _init_, init and documentation. A shinken module can use the following func-
tions:

• managed_broks: A specific function that will dynamically build calls for functions for specific brok.types if the
functions exist.

15.5. Hacking the Shinken Code 427

Shinken Documentation, Release 2.4

• manage_NAME-OF-BROK-TYPE_broks: The function that will process a specific type of brok

The brok types are created in the code and are not registered in a central repository. At this time the following brok
types exist and can be processed by broker modules.

• clean_all_my_instance_id

• host_check_resulthost_next_schedule

• initial

• initial_command_status

• initial_contactgroup_status

• initial_contact_status

• initial_hostgroup_status

• initial_host_status

• initial_poller_status

• initial_reactionner_status

• initial_receiver_status

• initial_scheduler_status

• initial_servicegroup_status

• initial_service_status

• initial_timeperiod_status

• log

• notification_raise

• program_status

• service_check_result

• service_check_resultup

• service_next_schedule

• update

• update_host_status

• update_poller_status

• update_program_status

• update_reactionner_status

• update_receiver_status

• update_scheduler_status

• update_service_status

15.5.7 Example of code hacking : add a parameter for the flapping history

• Configuration part

• Running part

428 Chapter 15. Development

Shinken Documentation, Release 2.4

• The perfect patch

In the Nagios code, the flapping state history size is hard coded (20). As in the first Shinken release. Let’S see how it
works to add such a parameter in the global file and use it in the scheduling part of the code.

We will see that adding such a parameter is very (very) easy. To do this, only 5 lines need to be changed in :

• config.py : manage the global configuration

• schedulingitem.py : manage the scheduling algorithms of host/services

Configuration part

In the first one (config.py) we add an entry to the properties dict :

"flap_history" : {"required":False, "default":'20", "pythonize": to_int, "class_inherit" : [(Host, None), (Service, None)]},

So this property will be an option, with 20 by default, and will be put in the Host and Service class with the name
‘flap_history’.

That’s all for the configuration! Yes, no more add. Just one line :)

Running part

Now the scheduling part (schedulingitem.py). The hard code 20 was used in 2 functions : add_flapping_change and
update_flapping. From this file, we are in an object named self in Python. To access the ‘flap_history’ of the Host or
Service class of this object, we just need to do :

flap_history = self.__class__.flap_history Then we change occurrences in the code : if len(self.flapping_changes)
flap_history: [...] r += i*(1.2-0.8)/flap_history + 0.8 r = r / flap_history

That’s all. You can test and propose the patch in the devel list. We will thank you and after some patch proposals, you
can ask for a git access, you will be a Shinken developer :)

The perfect patch

If you can also add this property in the documentation (/doc directory)

If you followed the Python style guide. (See development rules)

If you created an automated test case for a new feature. (See development rules)

If you documented any new feature in the documentation wiki.

The patch will be perfect :)

15.6 Shinken documentation

15.6.1 About this documentation

This documentation uses Python-sphinx 1, which itself uses reStructuredText 2 syntax.

1 http://sphinx.pocoo.org/
2 http://docutils.sourceforge.net/rst.html

15.6. Shinken documentation 429

http://sphinx.pocoo.org/
http://docutils.sourceforge.net/rst.html
http://sphinx.pocoo.org/
http://docutils.sourceforge.net/rst.html

Shinken Documentation, Release 2.4

The guidelines below are loosely based on the documentation-style-guide-sphinx 3 project and improve upon the
converted content of the numerous of contributors to the shinken wiki.

15.6.2 Contribute by...

• Removing all duplicate files / content from the source tree

• Split the configuration parameters that are unused from the unimplemented ones

• Remove the nagios and nagios-specific references (such as unused parameters) from the various pages

• Clean up the gettingstarted / installations section

• Fix the internal links on the “troubleshooting/troubleshooting-shinken” page

• Dedicate a basic page on how to use the shinken.io packs

• Shorten the directory names in the source directory for shorter links

• Find or create the correct targets for:

– the “configuringshinken/objectdefinitions#retention_notes” links, referenced multiple times by

* “configobjects/service”

* “configobjects/host”

– the “internal_metrics” links, or create the page based on http://www.shinken-
monitoring.org/wiki/internal_metrics

– the original “thebasics/cgis” links spread across the documentation

15.6.3 Directory structure

15.6.4 Filenames

Use only lowercase alphanumeric characters and - (minus) symbol.

Suffix filenames with the .rst extension.

15.6.5 Indentation

Indent with 2 spaces.

Attention: Except the toctree directive, it requires a 3 spaces indentation.

15.6.6 Blank lines

Two blank lines before overlined sections, i.e. before H1 and H2. See Headings for an example.

One blank line to separate directives.

3 http://documentation-style-guide-sphinx.readthedocs.org/en/latest/index.html

430 Chapter 15. Development

http://documentation-style-guide-sphinx.readthedocs.org/en/latest/index.html
http://www.shinken-monitoring.org/wiki/internal_metrics
http://www.shinken-monitoring.org/wiki/internal_metrics
http://documentation-style-guide-sphinx.readthedocs.org/en/latest/index.html

Shinken Documentation, Release 2.4

Some text before.

.. note::

Some note.
On multiple lines.

Exception: directives can be written without blank lines if they are only one line long.

.. note:: A short note.

15.6.7 Headings

Use the following symbols to create headings:

1. = with overline

2. =

3. -

4. ~

If you use more then 4 levels, it’s usually a sign that you should split the file into a subdirectory with multiple chapters.

As an example:

==================
H1: document title
==================

Introduction text.

Sample H2
=========

Sample content.

Another H2
==========

Sample H3

Sample H4
~~~~~~~~~

And some text.

There should be only one H1 in a document.

Note: See also Sphinx’s documentation about sections 4.

4 http://sphinx.pocoo.org/rest.html#sections

15.6. Shinken documentation 431

http://sphinx.pocoo.org/rest.html#sections
http://sphinx.pocoo.org/rest.html#sections


Shinken Documentation, Release 2.4

15.6.8 Code blocks

Use the code-block directive and specify the programming language if appropriate. As an example:

.. code-block:: python

import this

The :: directive works for generic monospaced text as used in configuration files and shell commands

::

define {
parameter

}

15.6.9 Links

The definition of a target for a link is done by placing an anchor.

.. _path-to-file/rst-filename: // placed on top of every file

.. _path-to-file/index: // placed in every index file, in every subdirectory of the source directory

.. _path-to-file/subdirectory/rst-filename: // placed on top of a file in a subdirectory

.. _path-to-file/rst-filename#anchor_on_the_page: // placed as an in-page anchor to a title

Anchor on the page
------------------

Links to the above anchors are made with the :ref: directive

:ref:`this is a reference of the first anchor <path-to-file/rst-filename>`.
:ref:`this is a reference of the last anchor <path-to-file/rst-filename#anchor_on_the_page>`

Note that we use underscores in the in-page anchors on titles, but use the - (minus) symbol in the rest of the links.
This has the advantage that a part of the file path can be copy-pasted when building links and only in-page anchors on
titles need some extra care when making links.

15.6.10 References

Optional when using a lot of references: use reference footnotes with the target-notes directive. As an example:

=============
Some document
=============

Some text which includes links to `Example website`_ and many other links.

`Example website`_ can be referenced multiple times.

(... document content...)

And at the end of the document...

References
==========

432 Chapter 15. Development



Shinken Documentation, Release 2.4

.. target-notes::

.. _`Example website`: http://www.example.com/

15.6.11 Documenting code

The documentation build process picks up your docstrings. See the python docstring guide.

15.6.12 References

15.6. Shinken documentation 433



Shinken Documentation, Release 2.4

434 Chapter 15. Development



CHAPTER 16

Deprecated

The following content is deprecated in this Shinken version and may be completely removed soon.

435



Shinken Documentation, Release 2.4

16.1 Feature comparison between Shinken and Nagios

Shinken is not just a fork of Nagios. It has been rewritten completely as a modern distributed application while
maintaining compatibility with the Nagios configuration, LiveStatus API and check plugins.

The major differences are listed below :

Feature Nagios Shinken In Shinken roadmap Notes
Host/Service monitoring with HARD/SOFT status management Yes Yes NA
Active monitoring with plugins Yes Yes NA
Passive monitoring Yes Yes NA
Compatible with RRDtool based data graphing addons Yes Yes NA Shinken also supports forwarding performance data to Graphite and has native Graphite template based graphs in the WebUI.
Network host hierarchy Yes Yes NA
Hosts and services dependencies Yes Yes NA
Proactive problem resolution Yes Yes NA
User-defined notifications Yes Yes NA
Notifications escalation Yes Yes NA
Syslog logging Yes Yes NA
Flap detection Yes Yes NA
Obessive compulsive commands Yes Yes NA It’s not useful in the Shinken architecture but it makes the switch to Shinken easier.
State freshness check Yes Yes NA
Event broker modules: Livestatus API, ndo, pnp, sqlite etc.. Yes Yes NA Shinken includes a host of native Python modules to make it easy to extend and support. Other supported integration modules : Graphite time-series database, GLPI, MongoDB, memcached, redis and more.
Load modules for any daemon. (Poller, Scheduler, Receiver, etc.) No Yes NA Modules can be loaded for any daemon. This makes supporting, extending and scaling Shinken very easy.
Graphite integration in the WebUI No Yes NA Graphite is a next-generation time-series database and visualisation web application/API. It stores non interpolated data in a distributed and scalable manner. The current standard RRD interpolates all data limiting its applicability.
Notifications escalation is not a pain in the ass to configure No Yes NA You can call an escalation from any host or service. That’s way easier to use!
Distributed monitoring Hard Yes NA Nagios can do DNX, but it’s not as easy to manage than Shinken architecture, and not as efficient.You think “easy as in cloud”?That’s Shinken.
High availability Hard Yes NA With Nagios, high availability implies a huge performance hit.
Distributed AND high availability Hard Yes NA With Nagios, high availability implies a huge performance hit, and it is harder to get working and to maintain.
Integrated business rules Hard Yes NA With Nagios it’s an addon, so it’s not easily manageable in a distributed configuration.
Problem/impacts Hard Yes NA With Nagios it is only available in the notification part, but with Shinken it’s also available in the real time monitoring views!
Easy DMZ monitoring No Yes NA Shinken has poller_tag that allow the user to put a poller in a DMZ and do all DMZhosts/services with it. It make less Firewall holes.
UTF-8 support No Yes NA Thank you Python. Now %µ~@^-nöel is supported as a host name.
Good performances. No Yes NA Need performance and scalability ? Try that with Nagios. . .
Runs on Windows No Yes NA Thank you Python again. Flexible monitoring : direct WMI or Powershell queries!
Configure flap history No Yes NA Nagios handles flapping for the 20 latest states only. It’s hard-coded. In Shinken it’s a configuration option.
Impact management No Yes NA For Nagios it’s as important when an incident impacts a qualification application or a production one. Shinken computes dynamically the business impact of the root problem based on criticality!
Modern language and program design No Yes NA Python is a forward looking and easy to program language. Shinken was developed using a TDD approach and makes use of modules with all the daemons to make it easy to extend and stability oriented.
Modern Web Interface built on twitter bootstart and jquery. No Yes NA Shinken 1.2 introduces a rebuilt WebUI interface which exposes the unique features of the underlying monitoring system.
MongoDB distributed DB No Yes NA Shinken 1.0 introduces mongoDB support for Livestatus and as the configuration database for the skonf preview.
Configuration pre-cache support Yes No No Pre-cache was useful for host circular relation check. I corrected it in Nagios and in Shinken as well. Pre-cache is no longer a required feature.
Limit external command slots Yes No No Shinken does not need to limit the number of external command in queue.
Advanced retain options Yes No No No one uses this.
Inter check sleep time Yes No No This is a historical Nagios option. Shinken has a real scheduler.
Configure reaper time Yes No No Reaping? That is one reason which makes Nagios so slow. Shinken does everything in memory.
Auto rescheduling option Hard No Yes In Nagios, it’s still experimental and not documented. This feature is in the roadmap. It can be useful to “smooth” the scheduling load.
Embedded Perl Yes Hard NA Shinken is in Python. Perl checks can be loaded using persistent perl, which is a near equivalent to embedded perl, it requires changing the first line of each check. So you do this for the most used perl scripts.
Embedded Python No Yes NA Shinken is in Python. Checks can be executed as poller or receiver modules for maximum scalability.
Regular expression matching Yes No No We believe this is a dangerous feature for the configuration and that most administrators avoid using it.
Binary Event broker compatibility Yes No No Shinken does not load binary modules like the ndomod.o file. It has its own loadable modules written in python : ndo, pnp, graphite, mongodb, sqlite, Livestatus API, NSCA, NRPE, TSCA, syslog, merlin and others

436 Chapter 16. Deprecated



Shinken Documentation, Release 2.4

16.1.1 Change Log

The Changelog file is included in the source root directory of the source code distribution.

16.1. Feature comparison between Shinken and Nagios 437



Shinken Documentation, Release 2.4

438 Chapter 16. Deprecated



CHAPTER 17

Shinken modules

This part must be splitted and sent in all module repositories

439



Shinken Documentation, Release 2.4

440 Chapter 17. Shinken modules



Python Module Index

s
shinken.__init__, ??
shinken.acknowledge, ??
shinken.action, ??
shinken.autoslots, ??
shinken.bin, ??
shinken.borg, ??
shinken.brok, ??
shinken.check, ??
shinken.clients, ??
shinken.clients.livestatus, ??
shinken.clients.LSB, ??
shinken.commandcall, ??
shinken.comment, ??
shinken.complexexpression, ??
shinken.contactdowntime, ??
shinken.daemons, ??
shinken.daterange, ??
shinken.db, ??
shinken.db_mysql, ??
shinken.db_oracle, ??
shinken.db_sqlite, ??
shinken.dependencynode, ??
shinken.discovery, ??
shinken.dispatcher, ??
shinken.downtime, ??
shinken.easter, ??
shinken.eventhandler, ??
shinken.graph, ??
shinken.load, ??
shinken.log, ??
shinken.macroresolver, ??
shinken.memoized, ??
shinken.message, ??
shinken.misc, ??
shinken.misc.datamanager, ??
shinken.misc.filter, ??
shinken.misc.md5crypt, ??
shinken.misc.perfdata, ??
shinken.misc.sorter, ??

shinken.misc.termcolor, ??
shinken.notification, ??
shinken.objects, ??
shinken.objects.businessimpactmodulation,

??
shinken.objects.checkmodulation, ??
shinken.objects.command, ??
shinken.objects.contact, ??
shinken.objects.contactgroup, ??
shinken.objects.discoveryrule, ??
shinken.objects.discoveryrun, ??
shinken.objects.escalation, ??
shinken.objects.host, ??
shinken.objects.hostdependency, ??
shinken.objects.hostescalation, ??
shinken.objects.hostextinfo, ??
shinken.objects.hostgroup, ??
shinken.objects.item, ??
shinken.objects.itemgroup, ??
shinken.objects.macromodulation, ??
shinken.objects.matchingitem, ??
shinken.objects.module, ??
shinken.objects.notificationway, ??
shinken.objects.pack, ??
shinken.objects.realm, ??
shinken.objects.resultmodulation, ??
shinken.objects.schedulingitem, ??
shinken.objects.service, ??
shinken.objects.servicedependency, ??
shinken.objects.serviceescalation, ??
shinken.objects.serviceextinfo, ??
shinken.objects.servicegroup, ??
shinken.objects.timeperiod, ??
shinken.objects.trigger, ??
shinken.property, ??
shinken.sorteddict, ??
shinken.trigger_functions, ??
shinken.util, ??
shinken.webui, ??
shinken.webui.bottlecore, ??
shinken.webui.bottlewebui, ??

441



Shinken Documentation, Release 2.4

shinken.worker, ??

442 Python Module Index


	About
	About Shinken

	Getting Started
	Advice for Beginners
	Installations
	Upgrading Shinken

	Configuring Shinken
	Configuration Overview
	Main Configuration File (shinken.cfg) Options
	Object Configuration Overview
	Object Definitions
	Custom Object Variables
	Main advanced configuration

	Running Shinken
	Verifying Your Configuration
	Starting and Stopping Shinken

	The Basics
	Setting up a basic Shinken Configuration
	Monitoring Plugins
	Understanding Macros and How They Work
	Standard Macros in Shinken
	Host Checks
	Service Checks
	Active Checks
	Passive Checks
	State Types
	Time Periods
	Determining Status and Reachability of Network Hosts
	Notifications
	Active data acquisition modules
	Setup Network and logical dependencies in Shinken
	Update Shinken

	Medium
	Business rules
	Monitoring a DMZ
	Shinken High Availability
	Mixed GNU/linux AND Windows pollers
	Notifications and escalations
	The Notification Ways, AKA mail 24x7, SMS only the night for a same contact
	Passive data acquisition
	Snapshots

	Advanced Topics
	External Commands
	Event Handlers
	Volatile Services
	Service and Host Freshness Checks
	Distributed Monitoring
	Redundant and Failover Network Monitoring
	Detection and Handling of State Flapping
	Notification Escalations
	On-Call Rotations
	Monitoring Service and Host Clusters
	Host and Service Dependencies
	State Stalking
	Performance Data
	Scheduled Downtime
	Adaptive Monitoring
	Predictive Dependency Checks
	Cached Checks
	Passive Host State Translation
	Service and Host Check Scheduling
	Object Inheritance
	Advanced tricks
	Migrating from Nagios to Shinken
	Multi layer discovery
	Multiple action urls
	Aggregation rule
	Scaling Shinken for large deployments
	Defining advanced service dependencies
	Shinken's distributed architecture
	Shinken's distributed architecture with realms
	Businessimpact modulations
	Check modulations
	Macro modulations
	Result modulations
	Shinken and Android
	Send sms by gateway
	Triggers
	Unused nagios parameters
	Advanced discovery with Shinken
	Discovery with Shinken

	Config
	Host Definition
	Host Group Definition
	Service Definition
	Service Group Definition
	Contact Definition
	Contact Group Definition
	Time Period Definition
	Command Definition
	Service Dependency Definition
	Service Escalation Definition
	Host Dependency Definition
	Host Escalation Definition
	Extended Host Information Definition
	Extended Service Information Definition
	Notification Way Definition
	Realm Definition
	Arbiter Definition
	Scheduler Definition
	Poller Definition
	Reactionner Definition
	Broker Definition

	Shinken Architecture
	Arbiter supervision of Shinken processes
	Advanced architectures
	How are commands and configurations managed in Shinken
	Problems and impacts correlation management
	Shinken Architecture

	Troubleshooting
	FAQ - Shinken troubleshooting

	Integration With Other Software
	Integration Overview
	SNMP Trap Integration
	TCP Wrappers Integration
	Use Shinken with Thruk
	Nagios CGI UI
	Thruk interface
	Use Shinken with ...
	Use Shinken with Centreon
	Use Shinken with Graphite
	Use Shinken with Multisite
	Use Shinken with Nagvis
	Use Shinken with Old CGI and VShell
	Use Shinken with PNP4Nagios
	Use Shinken with WebUI

	Security and Performance Tuning
	Security Considerations
	Tuning Shinken For Maximum Performance
	Scaling a Shinken installation
	Shinken performance statistics
	Graphing Performance Info With MRTG and nagiostats

	How to monitor ...
	Monitoring Active Directory
	Monitoring Asterisk servers
	Monitoring DHCP servers
	Monitoring IIS servers
	Monitoring Linux devices
	Monitoring Linux devices
	Monitoring Linux devices via a Local Agent
	Monitoring Linux devices via SNMP
	Monitoring Microsoft Exchange
	Monitoring Microsoft SQL databases
	Monitoring MySQL databases
	Monitoring Routers and Switches
	Monitoring Network devices
	Monitoring Oracle databases
	Monitoring Printers
	Monitoring Publicly Available Services
	Monitoring VMware hosts and machines
	Monitoring Windows devices
	Monitoring Windows devices via NSClient++
	Monitoring Windows devices via WMI

	How to contribute
	Shinken packs
	Shinken modules
	Getting Help and Ways to Contribute
	Shinken Package Manager

	Development
	Shinken Programming Guidelines
	Test Driven Development
	Shinken Plugin API
	Developing Shinken Daemon Modules
	Hacking the Shinken Code
	Shinken documentation

	Deprecated
	Feature comparison between Shinken and Nagios

	Shinken modules
	Python Module Index

